• Title/Summary/Keyword: 공기가열기

Search Result 98, Processing Time 0.024 seconds

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating were investigated. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There was also over-heating on the front surface of the pylon without film cooling. The coolant injected parallel to the front surface of the pylon protects the pylon from over-heating.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계기법 연구)

  • 이양지;차봉준;양수석;김형진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blow down type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm${\times}$200mm).

Numerical Study on the Process of Supersonic Flow Formation in a Direct-Connect Supersonic Combustor (Direct-Connect 초음속 연소기 내 초음속 유동 형성과정에 대한 수치해석)

  • Jeong, Seong-Min;Han, Hyunh-Seok;Sung, Bu-Kyeng;Lee, Eun-Sung;Choi, Jeong-Yoel
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.889-902
    • /
    • 2020
  • In this study, a numerical analysis was performed to confirm the formation of supersonic flow and the stabilization time satisfying the design condition in a Direct-connect supersonic combustor. The process was examined in which the high-pressure gas of vitiation air heater propagates downstream to the supersonic combustor and forms a supersonic flow field. It was confirmed through the analysis of pressure and temperature that the supersonic flow field satisfies the design points of Mach number 2.0 and 1,000 K, and requires a minimum of 4.0 ms for stabilization. These results indicate that the time required for the supersonic flow field stabilization should be taken into account when testing for the supersonic combustion experiment.

Design of a Shape Transition Nozzle for Lab-scale Supersonic Combustion Experimental Equipment (소형 초음속 연소시험 장치를 위한 형상 천이 노즐 설계)

  • Sung, Bu-Kyeng;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • Design of a shape transition nozzle is carried out as a part of building a lab-scale supersonic combustion experimental equipment. In order to connect directly the circular shaped vitiation air heater to the square shaped scramjet combustor, area change is evaluated by using the method of characteristics. Shape transition function is introduced to control the transition rate. Boundary layer correction was made through the three-dimensional computational fluid dynamics with the assessment on the several shape transition functions. The shape transition nozzle is proved minimizing the growth of boundary layer at the center of the rectangular nozzle surfaces that caused by the pressure gradient at the corners of the rectangular nozzle and the following recirculation regions.

Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid Solar Air-water Heater (태양열 공기-물 가열기의 공기 가열 성능 평가 및 열적 성능 개선을 위한 실험적 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.47-57
    • /
    • 2017
  • Solar energy is one of the important renewable energy resources. It can be used for air heating, hot water supply, heat source of desiccant cooling system and so on. And many researches for enhancing efficiency have been conducted because of these various uses of solar thermal energy. This study was performed to investigate the air heating performance of hybrid solar air-water heater that can heat air and liquid respectively or simultaneously and finding method for improving thermal performance of this collector. This collector has both liquid pipe and air channel different with the traditional solar water and air heater. Fins were installed in the air channel for enhancing the air heating performance of collector. Also air inlet & outlet temperature, ambient temperature and solar collector's inner part temperature were confirmed with different air velocity on similar solar irradiance. As a result, temperature of heated air was shown about $43^{\circ}C$ to $60^{\circ}C$ on the $30^{\circ}C$ of ambient temperature and thermal efficiency of solar collector was shown 28% to 73% with respect to air velocity. Also, possibility of improvement of thermal performance of this collector could be ascertained from the heat transfer coefficient calculated from this experiment. Thus, it is considered that the research for finding optimal structure of hybrid solar air-water heater for enhancing thermal performance might be needed to conduct as further study based on the method for improving air heating performance confirmed in this study.

Heat Transfer and Pressure Drop Characteristics of Cross-Flow Plastic Air Heater for a Cooling Tower (냉각탑용 직교류형 플라스틱 공기가열기의 열전달 및 압력손실)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6072-6081
    • /
    • 2013
  • In this study, experiments were performed on air heater samples with three different shapes (chevron, wave and dimple type) to reduce the plumes from cooling towers. The tests were conducted for a range of frontal air velocities of 1~3 m/s and water flow rate 0.19~0.33 kg/s. The results showed that the heat transfer rate increased with increasing air velocity or water flow rate. The air-side pressure drop also increased with increasing air velocity. At the same frontal air velocity, the highest heat transfer rate was obtained for the chevron sample (1.5~1.7 times compared to that of the plate sample), followed by the dimple, wave and plate samples. The heat transfer rate per unit power consumption was also 15% larger than that of the dimple sample. On the other hand, there was no noticeable difference between the other samples.

Thermoacoustic Power Generation by a Spiral Heater in the Rijke Tube (Rijke 관에서 나선형 가열기에 의한 열음향 파워의 생성)

  • Kwon, Young-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.491-496
    • /
    • 2010
  • Thermoacoustic power generation by a spiral heater in the Rijke tube was analyzed numerically. In the analysis, variables were normalized by the angular frequency of the sound and the thermal diffusivity of the air. The effect of the heater wire diameter d, the spacing between wires P-d, and the air-current velocity $U_0$, upon the power generation was obtained and discussed. When the spacing is broad enough, the normalized velocity is $U_0{\approx}0.8$ and the diameter is $d{\approx}4$ for the maximum power generation. With decrease of the spacing, however, the power generation increases more than 5 times and becomes maximum around $d{\approx}2$, $P-d{\approx}3$. And the velocity $U_0{\approx}0.8$ for the maximum power generation is almost independent of the wire spacing.

A Theoretical and Experimental Study for the Design of Solar Air Heaters Using Porous Material (다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론 및 실험적 연구)

  • Hwang, Yong-Ha;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.336-345
    • /
    • 1996
  • A theoretical and experimental study was conducted in order to design highly efficient solar air heaters using porous material. Radiative characteristics of glass windows and porous absorbing media were correlated through spectral transmittances measured by the UV-Visible and the FT-IR spectrometers. Using those characteristics the efficiencies of collectors were numerically calculated with the use of the two-flux radiation model. Based on the theoretical results, an experimental solar collector was designed and constructed. Experimental results under various conditions show that the daily efficiencies are over 60% in general and agree well with the theoretically calculated ones.