• Title/Summary/Keyword: 공급유량

Search Result 953, Processing Time 0.031 seconds

A Development of Hydrological Model Calibration Technique Considering Seasonality via Regional Sensitivity Analysis (지역적 민감도 분석을 이용하여 계절성을 고려한 수문 모형 보정 기법 개발)

  • Lee, Ye-Rin;Yu, Jae-Ung;Kim, Kyungtak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.337-352
    • /
    • 2023
  • In general, Rainfall-Runoff model parameter set is optimized using the entire data to calculate unique parameter set. However, Korea has a large precipitation deviation according to the season, and it is expected to even worsen due to climate change. Therefore, the need for hydrological data considering seasonal characteristics. In this study, we conducted regional sensitivity analysis(RSA) using the conceptual Rainfall-Runoff model, GR4J aimed at the Soyanggang dam basin, and clustered combining the RSA results with hydrometeorological data using Self-Organizing map(SOM). In order to consider the climate characteristics in parameter estimation, the data was divided based on clustering, and a calibration approach of the Rainfall-Runoff model was developed by comparing the objective functions of the Global Optimization method. The performance of calibration was evaluated by statistical techniques. As a result, it was confirmed that the model performance during the Cold period(November~April) with a relatively low flow rate was improved. This is expected to improve the performance and predictability of the hydrological model for areas that have a large precipitation deviation such as Monsoon climate.

Experimental study for the development of using hydrophone bedload discharge estimation equation (하이드로폰을 이용한 소류사량 추정 관계식 개발을 위한 실험적 연구)

  • Kim, Hyeongyu;Choi, Jongho;Jun, Kyewon;Kim, Sunguk;Lee, Donghyeok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.146-146
    • /
    • 2020
  • 최근 하천의 유사 중 소류사량을 계측하기 위해 사용된 기존의 물리적 소류사 샘플러를 이용한 직접계측방법은 홍수 시에 깊은 수위와 빠른 유속, 계측 절차상의 위험성 때문에 현장관측이 매우 어려운 한계를 극복하기 위해 현업에서는 소류사량을 간접적으로 추정하는 이론식에 의한 방법이 광범위하게 활용되고 있으나 이 방법 또한 추정이론식의 적용지역, 적용방법에 따라 결과가 수십배 이상 큰 차이를 나타나 실제 활용성에 대한 문제점이 있다. 이러한 기존의 소류사량 측정 방법의 문제점을 보완하기 위해 소류사량을 간접계측하는 방법이 활발히 제안되고 있다. 대표적인 방법으로 하상 이동 시 소류사의 충돌음을 음향센서로 계측하여 신호처리를 통해 소류사량을 추정하는 계측기기인 하이드로폰이 있다. 그러나 국외의 소류사량 간접계측 장치는 소류사량의 운송량이 많을 경우 음향신호 중접으로 인해 펄스 수의 감소, 감지 가능한 입경크기의 제한 등의 문제가 있다. 또한 국내의 백무평(2018)이 제안한 소류사 분석 방법인 대역통과방법(B-P Method)는 소류사량 추정에 있어서 기존의 방법과는 달리 주파수 특성을 반영하여 이전 연구들에 비하여 펄스 검출률을 향상시겼지만 이 방법은 극히 낮은 저유속과 작은 입경이라는 실험조건에서 이루어졌다는 제한사항이 있다. 따라서 본 연구는 다양한 입경과 고유속에 대하여 소류사량을 정량화할 수 있는 방법을 제시하기 위해 소류사 입경이 하이드로폰에 충돌할 때 발생하는 단독입자의 충돌음을 계측하기 위한 실외 수로실험장치를 구축하여 계측을 수행하였다. 실험은 현장에서 대표 시료로 분류된 몇 가지 입경에 대해서 유량 변화에 따른 충돌음향과 소류사량 그리고 소류사 입경크기에 따른 하이드로폰에서 인지되는 음향 특성을 계측 및 분석하였다. 연구결과 입경 크기 및 수리조건 변화에 따른 하이드로폰의 충돌음향 특성을 파악하여 단일 입경별 소류사량 추정관계식을 산출하였다. 또한 산출된 추정 관계식의 특성치와 공급 소류사량 간의 관계를 유도해 보았다. 향후 혼합입경에 대한 실험과 추정 관계식 신뢰성 검토 후 추가적으로 다양한 실험조건을 고려하여 실제 하천에 운송되는 소류사량과의 교정관계 확립을 진행한다면 국내 소류사량 데이터 수집을 위한 현장 설치까지 가능할 것으로 사료된다.

  • PDF

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Study on Enhancement of Ammonia Generation for Effective Collision Frequency (유효충돌빈도를 고려한 암모니아 생성 증대기법 연구)

  • Sejin Kim;Yongseok CHoi;Hyunchul Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Research, such as developing alternative energy in the transportation field, including aviation, is being actively conducted to solve the issue of current climate change. Interest in ammonia fuel as a carbon free energy (CFE) source is increasing due to the ease of liquefaction and transportation and similarity in energy density to that of methanol. However, explosiveness and toxicity of ammonia make it difficult to handle. Therefore, in this study, stable ammonia production was attempted using relatively easy-to-handle urea water solution (UWS). High temperature steam was used to promote the hydrolysis of ammonia. In order to determine the causes for ammonia production below the theoretical equivalent ratio, it was suggested that there were not enough collisions to promote the hydrolysis based on the kinetic theory of gases. The hydrolysis of unreacted isocyanic acid (HNCO) was tested according to the change in water supply. As a result, an increased amount of ammonia produced was confirmed. The increased amount of ammonia produced in a certain section was dependent on the steam temperature and the flow rate of water supplied.

A Study on the Formation of River Sandbar and Management of River Forestation & Aggradation - Focusing on the Jang-Hang Wetland on the Han River - (하천의 사주 형성과 하도 수림화 및 육역화 관리방안에 관한 연구 - 한강 장항습지를 중심으로 -)

  • Hong Kyu Ahn;Dong Jin Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.43-54
    • /
    • 2024
  • Recently, most of the rivers in Korea are experiencing various problems in dimension and river environment, such as expansion of stable area where disturbance does not occur during flood, increase of excessive trees in river channel, fixation of river channel, reduction of sand bar. When the soil supplied by the flood is deposited in the river, the plant is settled in the formed terrain, and when another disturbance of the scale that does not erode there occurs after the plant is settled, the river gradually grows and the vegetation zone is formed there. In particular, in terms of river management, river forestation and river aggradation are objects that must be managed because they are disadvantageous in terms of flood control by lowering the flow rate and raising the water level. Therefore, in this study, the area of vegetation occupied by the year of sandbar was analyzed in the process of river aggradation in Jang-Hang wetland. In addition, the correlation between the growth of Jang-Hang wetland was analyzed through the analysis of the flow rate and the flooding frequency that directly affect the growth of Jang-Hang wetland. Through this, the management plan of Jang-Hang wetland, which is registered in Ramsar Wetland but has been river forestation and is undergoing river aggradation, was proposed.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space (유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Park, Joon-Ha;Park, Jum-Ok;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.674-684
    • /
    • 2018
  • The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.