• Title/Summary/Keyword: 공극탄성계수 측정

Search Result 19, Processing Time 0.022 seconds

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

Correlation of mineralogical and textural properties with mechanical qualities of granite dimension stone from the Namwon area, Korea (남원지역 화강암 석재의 품질, 암석조직과 구성광물의 비교연구)

  • 홍세선;윤현수;이병태
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.105-121
    • /
    • 2004
  • The purpose of this study is to investigate the relationship between petrographical and engineering properties of granitic rocks, widely used as building and ornamental stones in Korea, at the Namwon are a. This area is one of the most famous area as a domestic dimension stone production. The granitic rocks were examined for grain sizes, modal compositions and then same samples were tested to determine specific gravity, water absorption, porosity, uniaxial compressive strength, tensile strength, abrasive hardness, P-wave velocity, modulus of elasticity and Poisson's ratio. It is suggested that the influence of the grain size on the engineering properties is more important than that of the mode of mineralogical compositions. And quartz contents also significantly influence the engineering properties of granitic rocks.

Empirical Rock Strength Logging in Boreholes Penetrating Sedimentary Formations (퇴적암에 대한 경험적 암석강도 추정에 대한 고찰)

  • Chang, Chan-Dong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.174-183
    • /
    • 2004
  • The knowledge of rock strength is important in assessing wellbore stability problems, effective sanding, and the estimation of in situ stress field. Numerous empirical equations that relate unconfined compressive strength of sedimentary rocks (sandstone, shale, and limestone, and dolomite) to physical properties (such as velocity, elastic modulus, and porosity) are collected and reviewed. These equations can be used to estimate rock strength from parameters measurable with geophysical well logs. Their ability to fit laboratory-measured strength and physical property data that were compiled from the literature is reviewed. While some equations work reasonably well (for example, some strength-porosity relationships for sandstone and shale), rock strength variations with individual physical property measurements scatter considerably, indicating that most of the empirical equations are not sufficiently generic to fit all the data published on rock strength and physical properties. This emphasizes the importance of local calibration before one utilizes any of the empirical relationships presented. Nonetheless, some reasonable correlations can be found between geophysical properties and rock strength that can be useful for applications related to wellhole stability where haying a lower bound estimate of in situ rock strength is especially useful.

Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size (천연모래 치환율과 경량 굵은 골재 최대 크기에 따른 경량 골재 콘크리트의 역학적 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • The effect of the maximum aggregate size and substitution rate of natural sand on the mechanical properties of concrete is evaluated using 15 lightweight aggregate concrete mixes. For mechanical properties of concrete, compressive strength increase with respect to age, tensile resistance, elastic modulus, rupture modulus, and stress-strain relationship were measured. The experimental data were compared with the design equations specified in ACI 318-08, EC2, and/or CEB-FIP code provisions and empirical equations proposed by Slate et al., Yang et al., and Wang et al. The test results showed that compressive strength of lightweight concrete decreased with increase in maximum aggregate size and amount of lightweight fine aggregates. The parameters to predict the compressive strength development could be empirically formulated as a function of specific gravity of coarse aggregates and substitution rate of natural sand. The measured rupture modulus and tensile strength of concrete were commonly less than the prediction values obtained from code provisions or empirical equations, which can be attributed to the tensile resistance of lightweight aggregate concrete being significantly affected by its density as well as compressive strength.

Determination of Rock Abrasiveness using Cerchar Abrasiveness Test (세르샤 마모시험을 통한 암석의 마모도 측정에 관한 연구)

  • Lee, Su-Deuk;Jung, Ho-Young;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.284-295
    • /
    • 2012
  • Abrasiveness of rock plays an important role on the wear of rock cutting tools. In this study, Cerchar abrasiveness tests were carried out to assess the abrasiveness of 19 different Korean rocks. Cerchar abrasiveness test is widely used to assess the abrasiveness of rock because of its simplicity and inexpensive cost. This study examines the relationship between Cerchar Abrasiveness Index (CAI) and mechanical properties (uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio, porosity, shore hardness of rock), and the effect of quartz content, equivalent quartz content, which was obtained from XRD analysis. As a result of test, CAI was more influenced by petrographical properties than by the bonding strength of the matrix material of rock. CAI prediction model which consisted of UCS and EQC was proposed. CAI decreased linearly with the hardness of the steel pin. Numerical analysis was performed using Autodyn-3D for simulating the Cerchar abrasiveness test. In the simulations, most of pin wear occurred during the initial scratching distance, and CAI increased with the increase of normal loading.

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

Engineering Characteristics of Mudeungsan Tuff and Ipseok-dae Columnar Joints (무등산응회암과 입석대 주상절리대의 공학적 특성)

  • Noh, Jeongdu;Jang, Heewon;Lim, Chaehun;Hwang, Namhyun;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • This study is to examine the engineering characteristics of colunmar joints in Mudeugsan National Park, a global geopark. For these purposes, physical and mechanical properties of Mudeungsan Tuff, evaluation for the weathering degree of columnar joints, and crack behavior monitoring in columnar joints were conducted. The physical properties of Mudeungsan tuff were 1.02% for the average porosity, 0.38% for the average absorption, 2.69 g/㎤ for the average specific gravity, and 4,948 m/s for the average elastic wave velocity. Its mechanical properties were 337 MPa for the average uniaxial compressive strength, 68 GPa for the average elastic modulus, 0.29 for the average Poisson's ratio, 41.3 MPa for the average cohesion strength, and 62.8° for the average friction angle. the average rebound Q-value of the silver Schmidt hammer for the three columnar joint blocks at the Ipseok-dae was shown as 49.3. when this value is converted into uniaxial compressive strength, it becomes 70.5 MPa, which is about 21% of the uniaxial compression strength of Mudeungsan tuff. In addition, according to the results of crack monitoring measurements for the three columnar joint blocks at the Ipseok-dae, the crack behavior is less than 1 mm, so it is believed that its behavior in Ipseak-dae columnar joints has hardly occured to date.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.