• Title/Summary/Keyword: 공극시험

Search Result 427, Processing Time 0.025 seconds

Series-Gap Characteristics of Transmission Line Arrester with Switching and Lightning Impulse Flashover Test (개폐서지 및 뇌충격 섬락시험에 따른 송전 피뢰기의 직렬공극 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.484-485
    • /
    • 2007
  • This paper describes the series-gap characteristics of transmission line arrester with switching and lightning impulse flashover test. The transmission line arrester exhibited external gap because it is must not flashover with switching impulse on the other hand it is must flashover with lightning impulse. In accordance, minimum and maximum length of series-gap was determinated with these tests. As gap length is increased flashover voltage was increased in the range of 315.4 kV~496.3 kV and negative polarity exhibited a high voltage. As a result, It was thought tat the series-gap length of transmission line arrester exhibited in the range of 580 mm~1100 mm.

  • PDF

Analysis of air gap flux density and Test of characteristics of the induction motor considering mechanical unbalance of a rotor and driving condition (유도형 모터의 회전자 편심과 운전상태를 고려한 공극 자속 밀도의 해석과 특성시험)

  • Jang, S.M.;Lee, S.L.;Lee, S.H.;Park, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.76-78
    • /
    • 1998
  • Noise and vibration are one of the most unpleasant hazards of driving motors. Therefore, it is important to reduce noise and vibration. To do so, we need to analysis cause of those. This paper presents one of the process that search for the cause.

  • PDF

A Study on the Erosion Resistance Performance of Biopolymer Mixed Soils According to Soil Types (토양 종류에 따른 바이오폴리머 혼합토의 침식저항 성능 연구)

  • Kim, Myounghwan;Lee, Du Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.221-221
    • /
    • 2021
  • 토양의 강도와 점성을 높여주는 바이오폴리머를 제방 호안에 도포하면 기존의 다른 호안 재료들과 마찬가지로 제방을 보호하는 것이 가능하다. 특히 바이오폴리머는 천연 토양과 혼합하여 사용하므로 다른 인공적인 호안재료들에 비해 생태적으로 유리하다. 하지만 바이오폴리머는 결합되어지는 토양의 점도, 공극률, 입도 등의 토양이 가지는 특성에 따라 성능이 변화하기 때문에 바이오폴리머를 이용한 혼한토를 제방 호안에 적용하기 위해서는 적절한 강도를 가지게 하는 토양을 선정해야 한다. 본 연구에서는 바이오폴리머를 마사토 및 황토 등과 결합하여 시험구를 설치하고 식생환경을 조성한 뒤 실규모 실험수로에서 수리 실험을 수행하여 바이오폴리머를 이용한 호안 공법의 침식 저항 성능을 평가하고 토양의 종류에 따라 성능을 비교하였다.

  • PDF

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

A Study on the Mechanical Properties of the Cretaceous Tuffs in Goheung Area. (고흥지역에 분포하는 백악기 응회암의 역학적 특성에 관한 연구)

  • Kim Hai-Gyoung;Koh Yeong-Koo;Oh Kang-Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.273-285
    • /
    • 2004
  • The mechanical properties of the Cretaceous tuff distributed in the Goheung area were measured in the laboratory. Tuff (Goehung tuff and Palyeongsan welded tuff) in the study area is classified into vitric tuff with regard to its composition. The specific gravity, the dry density, the water content, the porosity and absorption ratio in tuffs of the study area are 2.51, $2.52(g/cm^2)$, 0.12($\%$), 4.51($\%$) and 1.91($\%$) in means, respectively. In the tuffs, dry densities are in inverse Proportion to Porosities, and absorption ratios are highly proportional with Porosities. The uniaxial compressive strengths(UCS) in the tuffs ranges from 80.4 to 208(MPa) and the average of the strength is 141.1(MPa). According to the engineering classification of intact rock (Deere & Miller, 1966), the tuffs are assigned to the high strength rocks. The point load strength index ($Is_a$) in axial test is 4.2(MPa) on the average, and the point load strength index ($Is_d$) in diametral test is 2.2(MPa) in mean, and the point load strength anisotrophic index($Ia_{(50)}$) by the ratio of $Is_a$ to $Is_d$ is 1.93. There is close linear correlation between the uniaxial compressive strength and point load strength index, and the equation representing the correlation is postulated as follows : UCS = 22 $Is_{(50)}$ +49 (MPa) (r=0.95). It is considered that this equation is a useful tool to estimate UCS for tuff in Goheung area.

Analysis of the Mechanical Properties and Slake Durability of Fresh to Weathered Cretaceous Shale (풍화에 따른 백악기 셰일의 물성 및 슬레이크 내구성에 관한 연구)

  • Kim, Hai-Gyoung;Kim, Tae-Kuk;Oh, Kang-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2010
  • We performed laboratory measurements of the mechanical properties and slake durability of Cretaceous shale from the Hwasun area, Korea, including highly weathered and fresh samples, yielding ranges of specific gravity of 2.14-2.88, dry density of 1.86-2.83(g/$cm^3$), water content of 0.12-6.36 (%), porosity of 1.33-20.49 (%), and absorption ratio of 0.51-8.5 (%). The absorption ratio shows a strong linear relation with porosity, expressed as Ab = 0.44P-0.09 (Ab: absorption ratio, P: porosity). Values of the slake durability index ($Id_2$) and point load intensity index ($Is_{(50)}$) of highly weathered to fresh shale are 90.07-99.33 (%) and 10.8-90.2(kg/$cm^2$), respectively. $Id_2$ is linearly related to $Is_{(50)}$, expressed as $Is(50)=1E-07e^{0.2033Id_2}$(kg/$cm^2$)($r^2=0.69$). This equation is a useful tool for estimating the $Id_2$ value for shale in the Hwasun area.

Pore Structure and Physical Properties of Heterogeneous Bonding Materials of Recycled Aggregate according to Carbonation Reforming (순환 골재 부착 이질재의 탄산화 개질에 따른 공극구조 및 물리적 특성)

  • Shin, Jin-Hak;Kim, Han-Sic;Chung, Lan;Ha, Jung-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • At present, about 40 million tons of concrete is dismantled each year, which accounts for the largest portion of the total amount of construction waste with 60.8%. It is known about 97.5% of it is recycled. However, most of the usage of waste concrete is limited to lower value-added business areas, and considering the increasing amount of waste concrete generated due to the deterioration of structures, the need for converting waste concrete to structural concrete is urgent. Therefore, this study aims at estimating the period for the optimum carbonation reforming to improve the quality of recycled aggregate, by making use of the method of accelerated carbonation reforming of the bonding heterogeneous (cement paste and mortar) for the purpose of converting recycled aggregate to structural concrete. Based on the period appropriate for the heterogeneous thickness and each bonding thickness of recycled aggregate which was drawn from previous studies, the changes in the characteristics and physical properties of pore structure according to progress of accelerated carbonation were analyzed. The result shows that with the progress of carbonation, the pore volume and the percentage of water absorption of the bonding heterogeneous decreased and the density increased, which indicates improvement of the product quality. But after certain age, the tendency was reversed and the product quality deteriorated. Synthesizing the results of previous studies and those of the present study, this study proposed 4 days and 14 days respectively for the period for the optimum carbonation reforming of recycled fine aggregate and recycled coarse aggregate.

Optimum Carbonation Reforming Period of Recycled Aggregate Based on the Microscopic Carbonation Conduct (미시적 탄산화 거동에 기초한 순환 골재의 최적 탄산화 개질 기간)

  • Shin, Jin-Hak;Kim, Han-Sic;Ha, Jung-Soo;Chung, Lan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.329-340
    • /
    • 2016
  • Increase in demotion and repair works on buildings in the construction market generates a large amount of construction waste. Recycling of construction waste is important for saving of resources, preservation of environment and constant advance of the construction industry. Accordingly, the environmental and economic value of recycled aggregate, which is produced after waste concrete is crushed, is increasingly highlighted. It is generally known that compared to concrete made of ordinary aggregate, concrete made of recycled aggregate has low quality, and the low quality is dependent on the amount of the bonding heterogeneous (cement paste and mortar) as well as the amount of the pores within the bonding heterogeneous. Reports on carbonation mechanism shows that the pores of cement-based materials are filled up by the progress of carbonation. Therefore, this study aims at an estimation of the period for optimum carbonation reforming appropriate for the thickness of the bonding heterogeneous of recycled aggregate, based on carbonation mechanism, with a view to improving the product quality by means of filling up the pores of the bonding heterogeneous of recycled aggregate. This study drew the carbonation depth according to the passage of age by calculating the bonding ratio and bonding thickness of the bonding heterogeneous as against the particle size distribution of recycled aggregate as well as by chemical quantitative analysis according to the age of accelerated carbonation of mock-up samples imitating bonding heterogeneous. Based on the correlation between the age of accelerated carbonation and carbonation depth, this study also proposed the estimated period of carbonation reforming of recycled aggregate appropriate for the thickness of the bonding heterogeneous.

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water (해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

Characterization of Biomass-Based Foam Structures for Home-Meal-Replacement Containers (가정간편식 용기용 바이오매스 기반 발포구조체의 특성에 관한 연구)

  • Kim, Inae;Kim, Sumin;Kambiz, Sadeghi;Han, Jeonggu;Hwang, Kiseop;Kwon, Hyukjoon;Kim, Yongsu;Yoo, Seung Ran;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • A series of foamed plastic sheets containing biomass (as HMR container) were developed via different foaming process temperatures, and their density, porosity, WVTR, and pore morphology were evaluated. Thermal stability of samples during re-heating the food in oven, change in morphology, density, porosity, and WVTR were investigated using a simulated thermal shock process according to MIL-STD-883E assay. As such, the pore size of samples was generally increased with increasing temperature of the foaming process. It can be explained that as foaming temperature increased, the viscosity of molten resins and the repulsive force against pore expansion decreased. In addition, an increase in the thermal shock cycle reduced the pore size and WVTR, while density increased because high temperature treatment that softened the sheet matrix was followed by a low temperature incubation, which contracted the matrix, thereby changing the physical and morphological properties of samples. However, an insignificant change in density was observed and WVTR tended to be decreased, indicating that as-prepared foamed plastic sheets could be used as a high thermal stable container for HMR application. Therefore, it found that the properties of newly developed HMR containers containing biomass were dependent on the foaming process temperature. Moreover, to better understanding of these newly developed containers, further investigations dealing with foaming process temperature based on various food items and cooking conditions are needed.