• Title/Summary/Keyword: 공극비

Search Result 793, Processing Time 0.027 seconds

Effect of Stent Design Porosity on Hemodynamics Within Cerebral Aneurysm Model: Numerical Analysis (스텐트 공극률의 뇌동맥류 모델 내부 유동장 영향 수치해석)

  • Phan, Dai Thanh;Lee, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • In the present study, CFD simulations were conducted for investigating intra-aneurysmal flow characteristics with different stent porosities ($C_{\alpha}$ = 80%, 74%, and 64%), and the simulation results were compared with experimental data. Using a quadratic tetrahedral element-based finite element scheme, we estimated velocity fields and wall shear stress. The intra-aneurysmal velocity reduction ratios obtained via simulation agree well with published experimental data. It was found that a stent with a porosity of 80%, which is highest in the present study, is able to effectively reduce flow into the aneurysm, which causes intra-aneurysmal stasis, and that stents with lower porosities afford only incremental benefits in reducing inflow to an aneurysm.

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

토양오염도 측정을 위한 Frequency Domain Reflectometry with Vector Network Analyzer(FDR-V) system 적용성 평가

  • Kim Man-Il;Kim Hyeong-Su;Jeong Gyo-Cheol
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.36-41
    • /
    • 2005
  • 복소유전율상수인 실수부(Real part)와 허수부(Imaginary part)를 측정하기 위하여 Frequency Domain Reflectometry with Vector Network Analyzer(FDR-V) 측정 장비로 $1{\sim}18GHz$ 범위 내에서 매질의 기본 구성단위인 공기, 물, 흙입자에 대한 기본적인 유전율 특성을 파악하고, 이들로부터 다공질 매질내 유류 오염물질의 함유 특성을 측정할 수 있다. 또한 제작된 시료에 대한 포화도와 1GHz 범위에 분포하는 실수부 유전율상수와의 관계로부터 매질의 공극내 함유된 물질의 유전율상수 특성에 매우 민감한 반응을 보이므로, 이들로부터 매질의 공극률 내지 유효공극률의 측정이 가능할 것으로 사료된다.

  • PDF

Primary study on evaluation of wetting front distribution for weathered soil (토층 사면에서의 침윤선 분포 특성 파악을 위한 실험 연구)

  • Kim, Man-Il;Chae, Byung-Gon;Seo, Yong-Seok;Kim, Hyeun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1395-1399
    • /
    • 2008
  • 국내 토층 사면을 대상으로 강우에 의해 발생되는 침투수 거동 특성을 분석함으로써 지속적인 토층의 물성 변화 계측을 통해 산사태 예 경보시스템을 구축이 가능하다. 본 연구에서는 산사태 예 경보시스템 구축의 사전 단계로써, 국내 대표적인 지질 매질인 화강암 풍화토, 편마암 풍화토와 주문진 표준사에 대해 공극률과 체적함수비 등의 토질 물성 변화를 고려한 실내 보정실험을 수행하였다. 실험조건은 공극률, 체적함수비 변화에 대한 측정센서의 측정 정밀도 향상과 이를 통해 국내 현장토에 대한 고유 보정기법을 제시하기 위함이다. 측정센서는 각 실험 조건별 물성 변화에 따라 전압을 측정함으로써 현장토에 대한 물성치와 상호 분석이 가능하도록 하였다. 주문진 표준사 뿐만 아니라 국내 현장토인 화강암 풍화토와 편마암 풍화토에 대한 체적함수비에 대한 보정식도 함께 제시하였다.

  • PDF

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

Effect of Fractionated Organic Matter on Membrane Fouling (분류된 천연유기물질을 이용한 막 오염 특성 평가)

  • Lee, Byung-Gu;Son, Hee-Jong;Roh, Jae-Soon;Hwang, Young-Do;Jung, Chul-Woo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1321-1326
    • /
    • 2005
  • As a results of this research, the Nakdong River consisted of 43% of hydrophobic fraction, 39% of hydrophilic fraction, and 18% of transphilic fraction. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional roup(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores. The carboxylic acid functional group caused more fouling than the phenolic group.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Derivation and Application of Boussinesq Equations for the Wave Field in Porous Media (공극매체에서의 파동장에 대한 Boussinesq 방정식의 유도 및 적용)

  • Chun, Insik;Min, Yongchim;Lim, Hak-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1061-1071
    • /
    • 2015
  • In the present study, the Navier-Stokes (N-S) equations delineating water flows inside porous media were derived applying Reynolds transport theorem in order to provide a basis for analyzing water wave problems inside the porous media. Then, the derived N-S equations were compared with the same species of equations in existing researches. Based on the N-S equations, a set of Boussinesq equations was then derived in such a form that the dispersiveness and nonlinearity of water waves inside the porous media can be properly reproduced. Finally, numerical analyses were carried out to demonstrate the validity of the equations. The reflection and transmission coefficients of porous breakwaters were calculated and compared with the results of existing hydraulic experiments. The numerical results showed a rather sensitive dependency on the virtual mass coefficient of grains constituting the porous media. The selection of the coefficient with zero turned out to give nice agreements with numerical and experimental results.

Effects of Micropores on the Freezing-Thawing Resistance of High Volume Slag Concrete (슬래그를 다량 치환한 콘크리트의 동결융해 저항성능에 미치는 미세공극의 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Song, Gwon-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, effects of micropores on the freezing-thawing resistance of high volume slag concrete are reviewed. Concrete was made with slag which contains the ground granulated blast furnace slag(GGBS) and the pig iron preliminary treatment slag(PS) by replacing 0, 40, 70 %, then compressive strength, freezing-thawing resistance, micropores were reviewed. Also, specified design strength, target air contents were set. Deterioration was induced by using 14-day-age specimen which has low compressive strength for evaluating deterioration by freeze-thawing action. As results of the experiment, despite of specified design strength which has been set similarly and ensured target air contents, the pore size distribution of the concrete showed different results. Micropores in GGBS70 specimen have small amount of water which is likely to freeze because there is small amount of pore volume of 10~100 nm size at 0 cycle which has not been influenced by freezing-thawing. For these reasons, it was confirmed that the freezing-thawing resistance performance of GGBS70 is significantly superior than other specimens because relatively small expansion pressure is generated compared to the other specimens.

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon (야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.157-164
    • /
    • 2021
  • Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.