• Title/Summary/Keyword: 공구 수명

Search Result 142, Processing Time 0.035 seconds

Characteristics of Tool Life according to the Cutting Direction and Cutting Speed in Machining on Inclined Plane using Ball End Mill (볼 엔드밀의 경사면 가공에서 공구경로와 절삭속도에 따른 공구수명의 특성)

  • 박윤종;김경균;강명창;김정석;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.240-244
    • /
    • 1999
  • This paper deals with the establishment of the cutting direction on inclined plane by using ball end mill. Ball-end milling is widely used for free form surface die and mold. In these machining, the cutting parts vary because the tool tip is hemisphere shaped. The cutting characteristics, such as cutting force, surface roughness and surface profile are varied according to the variation of cutting directions. The effective tool diameter was calculated on different tilt angles and tool-path. Tool life and cutting characteristics were estimated on variation of cutting directions in the same cutting speed. In this paper, the optimal cutting direction which can be applied 3-D sculpture surface cutting is suggested.

  • PDF

Chatter control and tool condition monitoring of turning processes using sound pressure (음압을 이용한 선삭공정에서의 채터제어 및 공구 상태감시)

  • Lee, S.I.;Chung, S.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.50-57
    • /
    • 1997
  • In order to make unmanned machining systems with satisfactory performances, it is necessary to incorporate appropriate condition monitoring systems in the machining workstations to provide the required intelligence of the expert. This paper deals with condition monitoring for chatter, tool wear and breakage during turning operation. To develop economic sensing and identiffication methods for turning processes, sound pressure measurement and digital signal processing technique were proposed. We suppressed chatter by stability control methodology, which was studied through manipulation of spindle speeds regarding to chatter frequencies. It was shown that tool wear and fracture were identified and to be estimated by using the wear indices. The validity of the proposed system was confirmed through the large number of cutting tests.

  • PDF

The effect of TiN and coating parameters on the tool life extension (TiN 및 TiCN 코팅 특성이 공구수명에 미치는 영향에 대한 연구)

  • 백영남;정우창
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.317-324
    • /
    • 1998
  • TiN and TiCN films were deposited on the high speed steel by Cathode Arc Ion Plating(CAIP) Process to investigate the tool life extension effect. The experiment variables were bias voltage and deposit time for the TiN coating and reactive gas flow rate ($CH_4:N_2$) under fixing deposit pressure, are current, bias voltage for the TiCN coating respectively. The micro structure and mechanical properties were investigated and compared for among the coating conditions using various methods and machining practice.

  • PDF

음극 아크 증착으로 코팅된 TiAlN 박막의 물리적 특성 연구

  • Song, Min-A;Yang, Ji-Hun;Park, Hye-Seon;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.159-159
    • /
    • 2012
  • 티타늄-알루미늄(Titanium-Aluminum) 질화물(Nitride)은 고경도 난삭재의 고능률 절삭 분야에 사용되는 공구의 수명 향상을 위한 표면처리 소재로 각광을 받고 있다. 본 연구에서는 아크 소스로 TiAl 타겟을 사용 하였으며, $N_2$ 유량을 변화시키며 코팅을 실시하였다. 그 결과 경도 883~2510 Hv로 나타나는 것을 확인하였다.

  • PDF

A Study of New Quick Tool-Life Testing Method (II) - The Developement a New Testing Method of Step-Cutting - (새로운 急速 工具壽命 試驗法에 관한 硏究 II)

  • 오양균;정동윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.154-159
    • /
    • 1987
  • In the previously reported Part I, the behavior of the flank wear for carbide tool was studied as a preceeding step to present a simple method for Quick Tool-Life Testing, and the following general equation was obtained $W_{f}$ =(a+bt) $V^{m}$ . In this study the following step-cutting formula for the constants a, b and m in the above general model is derived by using step-cutting data [a numerical formula] To check the validity of the above formula, the comparison is made between the tool-life equation inferred in this method and that inferred in the conventional tool-life testing method, when the wear criterion is 0.3mm. The equation obtained in the present method is V(T')$^{0.57}$=1763 whereas the equation obtained in the conventional tool-life testing method is V(T)$^{0.56}$=1605 The results of the above two formula are satisfactory and also verify the validity of the present research.earch.

A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique(A Performance Estimation of High Speed Cutting Tool) (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구 (고속절삭공구의 성능평가를 중심으로))

  • Cho J.R.;Yang S.C.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.354-361
    • /
    • 2005
  • In high speed cutting process, due to the friction between the tool and workpiece, a temperature rise of contacting part is serious. It need to develop cutting tool for overcoming such a poor condition. So now, some studies, the optimization of tool shapes, the fine grains of tool material, multi-layer coating of tools are processing. If mirror finishing on the tool is processed, there is advantage of relation between chip and tool, because of less friction, and also tool's lift would be increased. As a result mirror like finishing is expected efficient enhancement of tool. Generally, it is too difficult to process by a general way for tools of complex shapes, it is required a new method to process such complex shape tools. The magnetic fluid polishing technique can polish the workpiece of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. In this paper, We polished the surface of the high speed cutting tool using the magnetic fluid polishing technique, to enhance the performance of the high speed cutting tool.

  • PDF

A Study on the Life Enhancement of TiN Coated Drill (TiN 박막을 코팅한 드릴의 수명향상에 관한 연구)

  • 김홍우;김문일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2340-2348
    • /
    • 1992
  • Recently, various film coated insert tools have been used in order to improve tool life by several different vapor deposition or chemical vapor deposition. Especially, TiN coated drills have been broadly studied because of improving drill performance in terms of drill life, work quality and its brilliant color. Nevertheless, because of the poor adhesion between TiN film and drill, it was difficult to attain the better drill performance. Therefore, to improve adhesion of TiN films, we sputtered titanium as interlayer prior to TiN deposition on drill by PECVD(Plasma Enhanced Chemical Vapor Deposition). The results indicate that Ti/TiN coated drills achieve about 2.6 times life improvement, while TiN coated drills only 2 times. Wear characteristics of tested drills were examined using SEM, and the results were correlated with drill life and roughness of drilled holes.

Design and Performance Test of High-speed Swivel Tool Head (고속 회전형 공구헤드의 설계 및 성능시험)

  • Kim, In-Hwan;Koo, Ja-Ham;Hur, Nam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2014
  • At present, a high-speed swivel tool head of a small size is required to improve the productivity of CNC automatic lathes. Hence, there is growing interest in shorter machining times with higher cutting speeds. However, an increase in the rotation speed of a swivel tool head also has adverse effects, such as vibration and noise caused by the swivel tool head system. In this work, the fatigue life and contact pressure of a swivel tool head bearing system driven by gears were calculated. Based on the calculated results, a prototype swivel tool head was manufactured and its static and dynamic characteristics, i.e., the vibration, noise and precision, were measured using a reliability testing device which allows the application of cutting force to the end of the swivel tool head.

Tool-Wear Characteristics of the Ceramic, CBN and Diamond Tools in Turning of the Presintered Low Purity Alumina (저순도 알루미나 예비소결체 선삭시의 세라믹, CBN 및 다이아몬드 공구의 마멸 특성)

  • Lee Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.80-88
    • /
    • 2006
  • In this study, unsintered and presintered low purity alumina ceramics were machined with various tools to clarify the machinability and the optimum cutting conditions. The main conclusions obtained were as fellows. Machined with ceramic tool, the ceramics presintered at the temperature range of $1000\~1100^{\circ}C$ showed the best machinability due to the adhesion formed in weared surface within a certain cutting speed range. In the above combination and conditions, the ceramic tool showed the highest productivity through all experiments. The life of CBN tool was longer in machining of the ceramics presintered at $1000^{\circ}C$ than in the case of that presintered at $600^{\circ}C$, but the diamond tool showed adverse tendency. In machining of the ceramics presintered at $1000^{\circ}C$, the ceramic tool exhibits the longest tool life in high speed, the tool lives became extremely worse in the order of CBN tool and diamond tool. However, in the case of the ceramics presintered at $600^{\circ}C$, the diamond tool shows the longest tool life, the tool lives was much worse in the order of CBN tool and ceramic tool.

The Effect of Tool Wear and Environmental Consciousness due to Cutting Fluid Atomization in Machining Process (기계가공시 공구수명과 절삭유 미립화에 따른 환경적 측면에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hong, Gi-Bae;Sung, Noh-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.854-857
    • /
    • 2000
  • This paper presents the experimental results of relationship between the machinability and environmental consciousness due to cutting fluid atomization in machining process. Even though cutting fluid improves the machined part quality through the cooling and lubracating effects, its environmental impact is also increased according to the cutting fluid usage. Cutting tool wear is one of criterion for deciding the machinability. A few turning operations were performed to know the qualitative effectiveness of cutting fluid to tool wear improvement. This research can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF