• 제목/요약/키워드: 공구의 처짐

검색결과 24건 처리시간 0.029초

직선도 개선을 위한 엔드밀링머시인 의 적응제어 (Adaptive Control of End Milling Machine to Improve Machining Straightness)

  • 김종선;정성종;이종원
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.590-597
    • /
    • 1985
  • 본 논문에서는 위치오차는 가공전 밀링베드를 수치제어 장치를 이용하여 가공 면에 수직한 방향으로 움직여 수치제어 장치인 스텝모우터의 분해능 한계 내에서 보정 하고 또한 공구휨에 상당하는 만큼 이 송속도를 더함으로써 제어하며, 파형오차는 이 송속도와 공구처짐 사이의 관계를 수정된 Taylor의 공구식으로 모형화하고 절삭공정중 이송속도를 적절히 조절하여 공구의 휨양을 제어함으로써 스텝모우터를 갖는 밀링머시 인에서 길이 508mm,두께 20mm의 두꺼운 철판을 평면절삭하는 경우 직진도오차를 최소 로 하는 GAC 방법을 개발하였다.측정은 밀링머시인 자체의 구조적, 동적변화나 절삭 조건의 변화, 공구의 재질 및 마멸상태의 변화, 공작물의 재질 변화등에 적응할 수 있 도록 Fig. 2에 보인 바와 같이 등간격으로 배열된 100개의 위치에서 가공후(post-pro- cess)측정을 통하여 취하였고, 절삭계수의 추정은 측정점을 각각 10개씩 10개의 구간 으로 묶어 각 구간에서의 계의 특성이 변하지 않는다는 가정하에서 계수를 지수가중 반복최소 자승(exponentially weighted recursive least squares, EWRLS)법을 이용하 여 추정하였고, 실제 절삭작업중 모델의 계수변화에 대한 사전 지식이 없이도 이들 계 수들을 보정시킴으로써 최적의 직진도를 얻을 수 있는 절삭조건을 제시하였다. 그리 고 이 방법의 도입으로 단일(SINGLE-PASS)밀링작업이 가능함을 보였고 또한 방법의 타 당성을 증명하기 위하여 여러 경우의 절삭상태에서 실험을 수행하였다.

볼 엔드밀 가공의 유연 절삭력 모델에 관한 연구 (A Study on the Flexible Cutting Force Model in the Ball End Milling Process)

  • 최종근;강윤구;이재종
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.44-52
    • /
    • 2003
  • This research suggests a cutting force model for the ball end milling processes. This model includes the effect of tool run out and tool deflection. In the proposed model, the flutes of ball end mills are considered as series of infinitesimal elements and each cutting edge is assumed to be straight for the analysis of the oblique cutting process, in which the small cutting edge element has been analyzed as an orthogonal cutting process n the plane including the cutting velocity and the chip-flow vector. Therefor, the cutting forces can be calculated through the model using the orthogonal cutting data obtained from the orthogonal cutting test. In order to enhance the performance of the model, the flutes of ball end mill are defined to keep geometric consistency at the peak of the ball part and the junction with the end mill part. The divided infinitesimal cutting edges are regulated to be even lengths. Some experiments show the validity of the developed model in the various cutting coalitions.

볼 엔드밀에 의한 정밀 가공에 관한 연구 (A stydy on the precision machining in ball end milling system)

  • 양민양;심충건
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.50-64
    • /
    • 1994
  • Cutter deflections in the ball-end milling process is one of the main causes of the machining errors on a free-form surface. In order to avoid machining errors in this process, a methodology avoiding these machining errors on the free-form surfaces has been developed. In this method, feedrates in the finish cuts are adjusted for the prevention of machining errors. A model for the prediction of machining errors on the free-form surface is analytically derived as a function of feed and normal vector at the surface of contact point by the cutter. This model is applied to the dertermination of the adjusted feedrates which satisfy the machining tolerance of the surface. In the finish cuts of a simple curved surface, the suggested model is examined by the measurements of the generated machining error on this surface. And also, this surface is machined with the adjusted feedrates for the given machining tolerance. The measured machining errors on this surface are compared with the given tolerance. In this comparisons, it is shown that the predicted errors are fairly good agreement with the test results.

  • PDF

고정밀 밀링가공을 위한 공구처짐 보정시스템 개발 (Development of a Tool Deflection Compensation System for Precision End-milling)

  • 최종근;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.42-46
    • /
    • 1993
  • This paper presents development of a pratical tool deflection compensation system in order to reduce the machining error by the tool deflection in the end-milling process. The system is a tool adapter which includes 2-axis force sensor for detecting tool deflection and 2-axis tool tilting device for adjusting tool position through computer interface in on-line process. In experiments, it is revealed that the force sensor applying parallel plate principle and strain gauge is proper to obtain dynamic process signal, and the tilting device using stepping motor and cam drive mechanism is suitable to have necessary action. By the system and control algorithm, it is possible to get precise machining surface profile without excessive machining error and overcut generated due to increased cutting force in more productive machining condition.

  • PDF

상용 Solid Modeler를 이용한 볼 엔드밀 가공의 절삭력 예측 (Prediction of Cutting Force in Ball-end mill Cutting using the Commercial Solid Modeler)

  • 이재종;박찬훈;최종근;박홍석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.197-200
    • /
    • 1997
  • In the metal cutting, machining accuracies had affected by tool deflection that had been generated by acting cutting force on the cutting edges. Generally, the CAD/CAM and a solid modeler had used for the simulation of cutting process only. Some NC codes for metal cutting have been generated by these simulation results. But, machining errors that had generated by the tool deflection has not solved using these system. In this study, determination algorithm for integration zone has been studied using the commercial solid modeler. The tool deflection error has calculated by the integration zone between the small chip and the cutting edges.

  • PDF

상용 Solid Modeler를 이용한 볼 엔드밀 가공의 절삭력 예측 (Prediction of Cutting Force in Ball-end mill Cutting using the Commercial Solid Modeler)

  • 이재종;박찬훈;최종근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.347-350
    • /
    • 2003
  • Many researches on the prediction of cutting forces of ball-end mil is have been achieved since before several decades ago. These kinds of researches have been concentrated on the study on how to make the prediction equations for the cutting forces based on 2-D cutting experimentation. The results of them were really good and impressive. But it's not proper to practical uses for industrial fields, because if sculptured surface were to be machined, then it would be very difficult to understand the complicated kinematical interaction between the sculptured surface and the flutes of a ball-end mill. So, we propose the method for solving these kind of problems using existed commercial CAD/CAM software; Unigraphics. Furthermore, the modification of tool path which is done off line is offered to increase the precision of cutting.

  • PDF

엔드밀에 의한 슬롯가공의 최적화에 관한 연구 (A Study on the Optimization of Slot Cut in the End Milling Processes)

  • 최종근;김형선
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.38-43
    • /
    • 2006
  • A slot cut in end milling processes is one of the laborious works because the cutting force is likely to deflect the tools excessively, then to make large errors or to fracture the tool. This difficulty is owing to the poor stiffness of slender shaped end mills. Though, in most cases, additional finish cuts are followed after rough cuts, the accuracy of rough cuts is still important because it affects the final accuracy after finish cuts and productivity. The accuracy in slot cuts depends on the tool stiffness and the cutting conditions including depth of cut and feed. In order to meet the desired accuracy, diameter of end mill and cutting allowance have to be selected carefully. This study suggests several guidances for selecting the end mill diameter and the slot cut allowance to improve machining accuracy and productivity in slot end millings. Some experiments were done with the various cutting parameters of tool diameter, depth of cut and feed.

엔드밀의 정적 강성에 관한 연구 (A Study on the Static Rigidity of the End Mill)

  • 이상규;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.9-14
    • /
    • 1996
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of radial cross sections of tile helical end mill is calculated for the determination of the relation between cross section and rigidity of tile tools. Using tile Bernoulli-Euler beam and and the concept of equivalent diameter, a deflection model is established, which includes most influence from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill.

  • PDF

상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구 (Improvement of the Accuracy in Machining Deep Pocket by Up Milling)

  • 이상규;고성림
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

엔드밀링에서 등가 진동계 모델링 (A Modeling Method of Equivalent Vibratory System in End Milling)

  • 백대균;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.135-141
    • /
    • 2003
  • For the analysis of machined surface topography and machine-tool chatter, the cutting system is considered to be a single degree of freedom system. This paper presents a modeling method of equivalent vibratory system for precision cutting in end-milling using an impact test, an Autoregressive Moving Average (ARMA) mode] and a bisection method It has been shown that the proposed modeling method provides a good identification of the cutting system. The advantages of the proposed method in comparison to the existing method are that it is very easy and accurate.