• Title/Summary/Keyword: 공간 해상도

Search Result 1,425, Processing Time 0.029 seconds

An Analysis of Soil Moisture Using Satellite Image and Neuro-Fuzzy Model (위성영상과 퍼지-신경회로망 모형을 이용한 토양수분 분석)

  • Yu, Myung-Su;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.154-154
    • /
    • 2012
  • 지표에서의 토양수분은 작은 구성비를 가짐에도 불구하고 여러 수문 현상을 연계하는 매우 중요한 인자로써 최근 관련 연구가 활발하게 진행되고 있다. 토양수분은 침투나 침루를 통하여 강우와 지하수를 연결하는 기능을 함과 동시에 강우사상에 따른 유출특성에 직접적인 영향을 미치며 증발산을 통하여 에너지 순환을 연결하는 중요한 기능을 한다. 토양수분을 측정하는 방법에는 세타 탐침(Theta Probe), 장력계, TDR(Time Domain Reflectrometry) 등이 이용되고 있으며, 광역 토양수분자료의 보다 정확한 공간 변동성의 관측을 위하여 항공원격탐사와 인공위성 원격탐사기술이 개발되어 적용되고 있다. 인공위성 영상은 자료의 분석이 간편하며, 공간자료이므로 공간 변화를 분석하는 데 있어 매우 편리하다. 그 중 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상은 저해상도 영상으로 극궤도 위성인 Terra와 Aqua 위성에 장착되어 있으며, NASA에서 필요한 정보를 받아 사용할 수 있다. 본 연구에서는 유역의 물리적 지형자료와 같은 방대한 양의 자료 수집 없이도, 모형이 구축되면 인공위성자료와 강우자료만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 산정할 수 있는 자료 지향형 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하였다. 사용된 퍼지변수로는 시험유역의 토양수분 관측자료와 강수량 및 인공위성 자료인 MODIS NDVI(Normalize Difference Vegetation Index), MODIS LST(Land-Surface Temperature) 영상을 이용하였다. MODIS NDVI는 시간 해상도 8일, 공간해상도 250 인 Level 3 영상이며, MODIS LST는 시간 해상도 1일, 공간해상도 1 km인 Level 3 영상을 사용하였다. 위성자료를 사용하기 위해 Korea TM 좌표체계로 변환한 뒤, 토양수분 관측지점이 속한 각 셀의 속성값을 추출하였다. 위성자료와 수집된 자료 및 토양수분자료와의 관계를 분석하기 위하여 입력자료를 다양한 방법으로 구성하여 입력 변수를 생성하였다. 생성된 입력 변수와 ANFIS 모형을 연계하여 각각의 토양수분 산정모형을 구축하고 대상지점에 대한 토양수분을 산정 및 비교 분석하였다.

  • PDF

Determination of Spatial Resolution to Improve GCP Chip Matching Performance for CAS-4 (농림위성용 GCP 칩 매칭 성능 향상을 위한 위성영상 공간해상도 결정)

  • Lee, YooJin;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1517-1526
    • /
    • 2021
  • With the recent global and domestic development of Earth observation satellites, the applications of satellite images have been widened. Research for improving the geometric accuracy of satellite images is being actively carried out. This paper studies the possibility of automated ground control point (GCP) generation for CAS-4 satellite, to be launched in 2025 with the capability of image acquisition at 5 m ground sampling distance (GSD). In particular, this paper focuses to check whether GCP chips with 25 cm GSD established for CAS-1 satellite images can be used for CAS-4 and to check whether optimalspatial resolution for matching between CAS-4 images and GCP chips can be determined to improve matching performance. Experiments were carried out using RapidEye images, which have similar GSD to CAS-4. Original satellite images were upsampled to make satellite images with smaller GSDs. At each GSD level, up-sampled satellite images were matched against GCP chips and precision sensor models were estimated. Results shows that the accuracy of sensor models were improved with images atsmaller GSD compared to the sensor model accuracy established with original images. At 1.25~1.67 m GSD, the accuracy of about 2.4 m was achieved. This finding lead that the possibility of automated GCP extraction and precision ortho-image generation for CAS-4 with improved accuracy.

Mapping and Validation of High Resolution Soil Moisture Using Downscaling Method (Downscaling을 이용한 고해상도 토양수분 지도 mapping 및 검증)

  • Hur, Yoo-Mi;Choi, Min-Ha;Kim, Tae-Woong;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.349-352
    • /
    • 2011
  • 토양수분은 지표와 대기에서 물과 에너지를 교환하는 중요한 수문기상 인자임에도 불구하고 토양수분에 대한 중요성이 부족한 실정이다. 최근에는 위성기술의 발달로 Aqua위성에 탑재된 Advanced Microwave Scanning Radiometer E (AMSR-E)를 이용하여 토양수분을 측정하고 있다. 이는 토양수분을 측정하고 있는 가장 유용한 기기로서 25km의 낮은 공간 해상도를 가지고 있어 토양수분의 변화를 나타내는데 한계점을 가지고 있다. 본 연구에서는 AMSR-E의 공간 해상도를 높이고자 비교적 높은 해상도를 (1km) 가지고 있는 Moderate Resolution Imaging Spectroradiometer (MODIS)를 연동하였으며, MODIS의 산출물 중 Albedo, LST, NDVI 인자를 이용하였다. 이를 바탕으로 1km의 고해상도 일 별 토양수분 지도를 작성하였으며, 이 지도를 각각 관측 토양수분과 비교 검증하였다. 향후 일별 고해상도 토양수분 지도를 작성하면 우리나라에 대한 토양수분 데이터베이스를 구축해 나갈 수 있을 것이다.

  • PDF

Merging of multiple resolution-based precipitation data using super resolution convolution neural network (Super Resolution Convolutional Neural Network(SRCNN)를 이용한 다중 해상도 기반의 강수 데이타 병합)

  • Gyu-Ho Noh;Kuk-Hyun Ahn
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.121-121
    • /
    • 2023
  • 다수의 서로 다른 해상도의 자료를 병합(Merge)하는 것은 강수 자료 사용에 중요한 절차 중 하나이다. 강수 자료는 다수의 소스(관측소, 레이더, 위성 등)에서 관측 자료를 제공한다. 연구자들은 각 원본 자료의 장점을 취하고 단점을 보완하기 위해 다중소스 기반의 재분석 강수 자료를 제작하여 사용하고 있다. 기존의 방법은 자료를 병합하기 위해 서로 다른 공간적 특성을 갖는 자료들을 공간적으로 동일한 위치로 보간(Interpolation) 하는 과정이 필요하다. 하지만 보간 절차는 원본자료에 인위적인 변형을 주기 때문에 많은 오차(Error)를 발생시키는 것으로 알려져 있다. 따라서 본 연구는 병합 과정에서 보간 절차를 제외하고 원본 해상도 자료를 그대로 입력하기 위해 머신 러닝 방법의 하나인 Super resolution convolutional neural network(SRCNN)에 기반한 병합 방법을 제안하고자 한다. 이 방법은 원본 자료의 영향을 모델이 직접 취사선택하여 최종 자료에 도달하기 때문에 병합 과정의 오류를 줄일 수 있을 것으로 기대된다.

  • PDF

Spectral quality compensation of KOMPSAT-2 fused image by using induction technique (영상 유도 기법을 통한 KOMPSA를-2 융합영상의 분광정보 보정)

  • Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.186-189
    • /
    • 2009
  • KOMPSAT-2 고해상도 위성영상이 제공됨에 따라, 국내에서도 고해상도 위성영상을 활용한 다양한 연구 및 활용 사례가 증대되고 있다. KOMPSAT-2는 높은 공간해상도의 흑백영상과 멀티스펙트럴 영상을 동시에 제공하고 있는데, 개체 추출 및 고해상도의 토지 피복도 생성, 영상의 시각화를 위한 고해상도 멀티스펙트럴 영상 취득이 주요한 실정이다. 따라서 서로 다른 공간, 분광해 상도를 가지는 센서 자료를 이용하여 두 개의 장점을 모두 가지는 영상으로 재구성하는 영상융합은 원격탐사분야에서 중요한 연구분야이다. 이를 위해 다양한 영상융합기법이 연구되었지만, 대부분의 알고리즘들이 융합 후에 원 멀티스펙트럴 영상의 분광정보를 왜곡시키는 문제점을 지니고 있다. 본 연구에서는 영상 유도기법을 이용하여 융합영상의 분광정보를 향상시키는 방법을 제안하였다. 원 멀티스펙트럴 영상과 해상도를 낮춘 융합영상과의 비교 분석을 통하여 융합영상의 공간해상도 왜곡은 최소한으로 줄이고 왜곡된 분광정보를 최대한 보정하였다. 다양한 알고리즘을 통해 얻은 KOMPSAT-2 융합 영상에 본 알고리즘을 적용한 결과, 분광정보 왜곡량이 기존의 융합결과에 비해 줄어든 것을 확인할 수 있었으며, 이러한 결과는 다양한 응용분야에 활용될 수 있을 것이다.

  • PDF

Image similarity evaluation algorithm based on Similarity condition of triangles between feature points (특징점 간 삼각형 닮음 조건 기반 영상 간 유사 공간 계산 알고리즘)

  • Lee, Inhong;Kang, Jeonho;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.313-316
    • /
    • 2019
  • IT기술의 발전으로 다양한 디바이스들이 출현하고 있고, 디바이스들의 디스플레이 크기와 해상도가 증가하는 경향을 보임에 따라 파노라마 영상에 대한 필요성이 대두되고 있다. 현 상황에서 영상 소비 목적과 사용 디바이스에 맞는 영상을 제공하기 위하여 불특정 해상도를 가진 영상들을 정합하여 파노라마 영상을 제작하는 것이 필수적이다. 이와 같은 파노라마 영상을 제작하기 위해서는 영상 간 스티칭 기술이 필요하며, 해당 스티칭 기술은 영상 전체에 대한 정보를 사용하기 때문에 많은 시간이 소요된다. 이러한 문제점을 해결하기 위하여, 스티칭 대상 영역을 특정하는 영상 간 공간유사도 평가를 활용하면 스티칭 시간의 감소를 가져올 수 있다. 본 논문에서는 추출된 특징점을 대상으로 삼각형 닮음 조건을 적용하여 영상 간 공간유사도를 평가하는 알고리즘을 개발하고자 한다.

  • PDF

Pan-Sharpening Algorithm of High-Spatial Resolution Satellite Image by Using Spectral and Spatial Characteristics (영상의 분광 및 공간 특성을 이용한 고해상도 위성영상 융합 알고리즘)

  • Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.79-86
    • /
    • 2010
  • Generally, image fusion is defined as generating re-organized image by merging two or more data using special algorithms. In remote sensing, image fusion technique is called as Pan-sharpening algorithm because it aims to improve the spatial resolution of original multispectral image by using panchromatic image of high-spatial resolution. The pan-sharpened image has been an important task due to various applications such as change detection, digital map creation and urban analysis. However, most approaches have tended to distort the spectral information of the original multispectral data or decrease the spatial quality compared with the panchromatic image. In order to solve these problems, a novel pan-sharpening algorithm is proposed by considering the spectral and spatial characteristics of multispectral image. The algorithm is applied to the KOMPSAT-2 and QuickBird satellite image and the results showed that our method can improve the spectral/spatial quality compared with the existing fusion algorithms.

가상 현실 갤러리를 위한 관람자와 미술품의 거리 변화에 따른 해상도 변화

  • 박세근;박길철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.118-134
    • /
    • 1999
  • 가상 현실 미술관에서 시각적 요소인 해상도는 참여자에게 매우 중요한 인공현실감을 제공하며 실제 세계와의 상호 교류의 차이의 극복 요소로서 매우 중요한 부분으로 볼 수 있다. 이러한 시각적 측면을 중심으로 가상현실 전시관에서 관람객과 전시물 사이의 거리에 따른 감상 위치를 분석하고, avatar의 이동에 따른 원근법을 적용하여 해상도를 동적으로 변화시킨다. 특히, 가상 공간의 이동 예측 및 거리 측정에 따른 해상도의 변화는 현장감 향상에 도움을 준다.

  • PDF

Image Mosaic using Multiresolution Wavelet Analysis (다해상도 웨이블렛 분석 기법을 이용한 영상 모자이크)

  • Yang, In-Tae;Oh, Myung-Jin;Lee, In-Yeub
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.61-66
    • /
    • 2004
  • By the advent of the high-resolution Satellite imagery, there are increasing needs in image mosaicking technology which can be applied to various application fields such as GIS(Geographic Information system). To mosaic images, various methods such as image matching and histogram modification are needed. In this study, automated image mosaicking is performed using image matching method based on the multi-resolution wavelet analysis(MWA). Specifically, both area based and feature based matching method are embedded in the multi-resolution wavelet analysis to construct seam line.; seam points are extracted then polygon clipping method are applied to define overlapped area of two adjoining images. Before mosaicking, radiometric correction is proceeded by using histogram matching method. As a result, mosaicking area is automatically extracted by using polygon clipping method. Also, seamless image is acquired using multi-resolution wavelet analysis.

  • PDF

A Study on the Hydrological Quantitative Precipitation Forecast(HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 연구)

  • Choo, Kyung-Su;Shin, Yoon-Hu;Kim, Sung-Min;Jee, Yongkeun;Lee, Young-Mi;Kang, Dong-Ho;Kim, Byung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.63-63
    • /
    • 2022
  • 기상 예보자료는 발생 가능한 재난의 예방 및 대비 차원에서 매우 중요한 자료로 활용되고 있다. 우리나라 기상청에서는 동네예보를 통해 5km 공간해상도의 1시간 간격 초단기예보와, 6시간 간격 정량강우예보(Quantitative Precipitation Forecast, QPF)의 단기예보 정보를 제공하고 있다. 그러나 이와 같은 예보자료는 강우량의 시·공간변화가 큰 집중호우와 같은 기상자료를 활용한 수문학적인 해석에는 한계가 있다. 예보자료를 수문학에 활용하기 위한 시·공간적 해상도 개선뿐만 아니라 방대한 기상 및 기후 자료의 예측성능을 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에서는 기상청이 제공하는 지역 앙상블 예측 시스템(Local ENsemble prediction System, LENS)와 종관기상관측시스템(ASOS) 및 방재기상관측시스템(AWS) 관측 데이터 및 동네예보에 기계학습 방법을 적용하여 수문학적 정량적 강수량 예측(Hydrological Quantitative Precipitation Forecast, HQPF) 정보를 생산하였다. 전처리 과정을 통해 모든 데이터의 시간해상도와 공간해상도를 동일한 해상도로 변환하였으며, 예측 변수의 인자 분석을 통해 기계학습의 예측 변수를 도출하였다. 기계학습 방법으로는 처리속도와 확장성을 고려하여 XGBoost(eXtreme Gradient Boosting) 방식을 적용하였으며, 집중호우에서의 예측정확도를 높이기 위해 확률매칭(PM) 방식을 적용하였다. 생산된 HQPF의 성능을 평가하기 위해 2020년에 발생한 14건의 호우 사상을 대상으로 태풍형과 비태풍형으로 구분하여 검증을 수행하였다.

  • PDF