• Title/Summary/Keyword: 공간 토폴로지

Search Result 44, Processing Time 0.021 seconds

3D Scan Model Fitting by Using Statistics (통계를 이용한 3차원 스캔모델 맞춤 방법)

  • Soohyun Jeon;Hyewon Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.219-222
    • /
    • 2008
  • 3차원 인체 스캐너로부터 얻어진 인체형상데이터는 여러 인체에 대한 3차원 평균 모델을 만들어 내는 등의 통계적 분석이나 자세 변경을 위해 필요한 내부 골격 구조와 골격과 피부조직 사이의 관계 등을 계산해 내기 어렵다. 또, 이러한 통계적 분석을 위해서는 각 모델 간의 상응 관계가 확립되어야 하지만 스캐너로부터 얻어진 인체 형상 데이터들은 측정 환경이나 대상에 따라 각각이 서로 상이한 기하학적 구조로 이루어져 있다. 본 논문에서는 템플릿 모델을 3차원 인체데이터에 맞도록 변형함으로써 다수의 인체 형상에 대하여 토폴로지를 일치시키도록 한다. 3차원 인체 데이터에 대해 템플릿 모델이 가장 근사한 형상이 되도록 하는 변형을 자동으로 찾아내기 위해서 표면 위에 정의된 특징점들을 사용한다. 또한, 기존에 찾아둔 특징점군 및 변형정보 데이터가 충분히 많다면 새로운 변형을 계산하는 데 유용하게 사용될 수 있음을 보인다. 이렇게 상응 관계가 확립된 모델들은 삼차원 벡터 공간의 점들의 집합으로 표현 및 통계적 분석이 가능하게 된다.

Low-Latency Beacon Scheduling Algorithms for Vehicular Safety Communications (차량간 안전 통신에서 짧은 지연시간을 보장하는 비콘 스케줄링 알고리즘)

  • Baek, Song-Nam;Jung, Jae-Il;Oh, Hyun-Seo;Lee, Joo-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • The safety applications based on the IEEE 802.11p, periodically transmit the safety-related information to all surrounding vehicles with high reliability and a strict timeline. However, due to the high vehicle mobility, dynamic network topology and limited network resource, the fixed beacon scheduling scheme excess delay and packet loss due to the channel contention and network congestion. With this motivation, we propose a novel beacon scheduling algorithm referred to as spatial-aware(SA) beacon scheduling based on the spatial context information, dynamically rescheduling the beaconing rate like a TDMA channel access scheme. The proposed SA beacon scheduling algorithm was evaluated using different highway traffic scenarios with both a realistic channel model and 802.11p model in our simulation. The simulation results showed that the performance of our proposed algorithm was better than the fixed scheduling in terms of throughput, channel access delay, and channel load. Also, our proposed algorithm is satisfy the requirements of vehicular safety application.

Development of a Indoor LBS Application for Navigation - Focusing on Development for an IndoorGML Editor and Viewer - (실내 길 찾기를 위한 Indoor LBS 어플리케이션 개발 - IndoorGML 에디터(Editor) 및 뷰어(Viewer) 개발을 중심으로 -)

  • Yoon, Seung-Hyun;Choi, Jin-won
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.207-215
    • /
    • 2013
  • Due to an increase in the number of large-scale and high rise buildings, the importance of indoor location information has been highlighted. As a result, seamless three-dimensional space information, linked to various indoor and outdoor services is required. The purpose of this study is to develop a system which can edit and operate indoor space information using the IndoorGML(Geography Markup Language). It provides functions such as converting and editing authoring indoor space using the IndoorGML. Based on defined schema which is the IndoorGML international standardization work, we develop the "Editor" and "Viewer" for the IndoorGML. When indoor space is modeled in an authoring tool, a variety of topologies can be created automatically. These are available to be edited and modified. Moreover, the file of model can be saved as IndoorGML, SBM and KML file. These files are viewed by the "Viewer". Indoor LBS(Location Based Service)is served with these principles.

Group-based Cache Sharing Scheme Considering Peer Connectivity in Mobile P2P Networks (모바일 P2P 네트워크에서 피어의 연결성을 고려한 그룹 기반 캐시 공유 기법)

  • Kim, Jaegu;Yoon, Sooyong;Lim, Jongtae;Lee, Seokhee;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.20-31
    • /
    • 2014
  • Recently, cache sharing methods have been studied in order to effectively reply to user requests in mobile P2P networks. In this paper, we propose a cache sharing scheme based on a cluster considering the peer connectivity in mobile P2P networks. The proposed scheme shares caches by making a cluster that consists of peers preserving the connectivity among them for a long time. The proposed scheme reduces data duplication to efficiently use the cache space in a cluster. The cache space is divided into two parts with a data cache and a temporary cache for a cache space. It is possible to reduce the delay time when the cluster topology is changed or the cache data is replaced utilizing a temporary cache. The proposed scheme checks the caches of peers in a route to a cluster header and the caches of one-hop peers in order to reduce the communication cost. It is shown through performance evaluation that the proposed scheme outperforms the existing schemes.

Public Transport Network Connectivity using GIS-based Space Syntax (GIS 기반 Space Syntax를 이용한 대중교통 접근성)

  • Jun, Chul-Min
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.25-33
    • /
    • 2007
  • The local governments of major cities in Korea are giving focus on public transportation to reduce congestion and improve accessibility in city areas. In this regards, the proper measurement of accessibility is now a key policy requirement for reorganizing the public transport network. Public transport routing problems, however, are considered to be highly complicated since a multi-mode travel generates different combinations of accessibility. While most of the previous research efforts on measuring transport accessibility are found at zone-levels, an alternative approach at a finer scale such as bus links and stops is presented in this study. We proposes a method to compute the optimal route choice of origin-destination pairs and measure the accessibility of the chosen modes combination based on topological configuration. The genetic algorithm is used for the computation of the journey paths, whereas the space syntax theory is used for the accessibility. This study used node-link data in GIS instead of axial lines which are manually drawn in space syntax. The resulting accessibilities of bus stops are calibrated by O-D survey data and the proposed process is tested on a CBD of Seoul.

  • PDF

LISP based IP Address Virtualization Technique for Resource Utilization on Virtualized SDN (가상화된 SDN에서 효과적인 자원 활용을 위한 LISP 기반 IP 주소 가상화 기법)

  • Go, Youngkeun;Yang, Gyeongsik;Yu, Bong-yeol;Yoo, Chuck
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1404-1411
    • /
    • 2016
  • Network virtualization is a technique that abstracts the physical network to provide multiple virtual networks to users. Virtualized network has the advantage to offer flexible services and improve resource utilization. In SDN architecture, network hypervisor serves to virtualize the network through address virtualization, topology virtualization and policy virtualization. Among them, address virtualization refers to the technique that provides an independent address space for each virtual network. Previous work divided the physical address space, and assigned an individual division to each virtual network. Each virtual address is then mapped one-to-one to a physical address. However, this approach requires a lot of flow entries, thus making it disadvantageous. Since SDN switches use TCAM (Ternary Contents Addressable Memory) for the flow table, it is very important to reduce the number of flow entries in the aspect of cost and scalability. In this paper, we propose a LISP based address virtualization, which separates address spaces for the physical and virtual addresses and transmits packet through tunneling, in order to resolve the limitation of the previous studies. By implementing a prototype, we show that the proposed scheme provides better scalability.

Performance Tests of 3D Data Models for Laser Radar Simulation (레이저레이더 시뮬레이션을 위한 3차원 데이터 모델의 성능 테스트)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.97-107
    • /
    • 2009
  • Experiments using real guided weapons for the development of the LADAR(Laser radar) are not practical. Therefore, we need computing environment that can simulate the 3D detections by LADAR. Such simulations require dealing with large sized data representing buildings and terrain over large area. And they also need the information of 3D target objects, for example, material and echo rate of building walls. However, currently used 3D models are mostly focused on visualization maintained as file-based formats and do not contain such semantic information. In this study, as a solution to these problems, a method to use a spatial DBMS and a 3D model suitable for LADAR simulation is suggested. The 3D models found in previous studies are developed to serve different purposes, thus, it is not easy to choose one among them which is optimized for LADAR simulation. In this study, 4 representative 3D models are first defined, each of which are tested for different performance scenarios. As a result, one model, "Body-Face", is selected as being the most suitable model for the simulation. Using this model, a test simulation is carried out.

  • PDF

3D Node Deployment and Network Configuration Methods for Improvement of Node Coverage and Network Connectivity (커버리지와 네트워크 연결성 향상을 위한 3차원 공간 노드 배치 및 망 구성 방법)

  • Kim, Yong-Hyun;Kim, Lee-Hyeong;Ahn, Mirim;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.778-786
    • /
    • 2012
  • Sensors that are used on wireless sensor networks can be divided into two types: directional sensors, such as PIR, image, and electromagnetic sensors; and non-directional sensors, such as seismic, acoustic and magnetic sensors. In order to guarantee the line-of-sight of a directional sensor, the installation location of the sensor must be higher than ground level. Among non-directional sensors, seismic sensors should be installed on the ground in order to ensure the maximal performance. As a result, seismic sensors may have network connectivity problems due to communication failure. In this paper, we propose a 3D node deployment method to maximize the coverage and the network connectivity considering the sensor-specific properties. The proposed method is for non-directional sensors to be placed on the ground, while the directional sensor is installed above the ground, using trees or poles, to maximize the coverage. As a result, through the topology that the detection data from non-directional sensors are transmitted to the directional sensor, we can maximize the network connectivity. Simulation results show that our strategy improves sensor coverage and network connectivity.

Asynchronous Message Delivery among Mobile Sensor Nodes in Stationary Sensor Node based Real-Time Location Systems (고정형 센서 노드 기준 위치인식 시스템에서 이동형 센서 노드 간 비동기 메시지 전송방법)

  • Kim, Woo-Jung;Jeong, Seol-Young;Kim, Tae-Hyon;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.148-158
    • /
    • 2011
  • Stationary nodes and mobile nodes co-exist wireless sensor network(WSN) can provide variety of new services. The stationary sensor node acts not only the gathering the environmental sensing data but also a access point to bidirectional communication with numerous mobile sensor nodes(mobile node), and the mobile sensor nodes are installed inside mobile objects and identify the location in real-time and monitor the internal status of the object. However, only using the legacy WSN protocol, it is impossible to set up the stable network due to the several reasons caused by the free-mobility of the mobile nodes. In this paper, we suggest three methods to increase the hit-ratio of the asynchronous message delivery(AMD) among mobile nodes. We verified the performance of the suggested methods under the stationary-mobile co-existed WSN testbed.

Dynamic Inter-Cell Interference Avoidance in Self-Organizing Femtocell Networks (자가구성 펨토셀의 동적 셀간간섭 회피 기법)

  • Park, Sang-Kyu;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.259-266
    • /
    • 2011
  • Femtocells are expected as the surest way to increase the system capacity with higher-quality links and more spatial reuse in future networks. In spite of their great potential, the system capacity is highly susceptible to network density because a large portion of users are exposed to inter-cell interference (ICI). In this work, we proposed a dynamic interference avoidance scheme in densely deployed cell environments. Our proposed DDIA (Distributed Dynamic ICI Avoidance) scheme not only works in a fully distributed manner, but also controls interference link connectivity of users with high agility so that it is suited for self-organizing networks (SONs). We introduced the concept of ICI-link and two-tier scheduling in designing the DDIA scheme. To avoid ICI without any central entity, our scheme tries to harmonize all base stations (BSs) with users adaptively. Through extensive simulations, it was shown that our proposed scheme improves the throughput of users by more than twice on average compared to the frequency reuse factor 1 scheme, who are exposed to ICI while maintaining or even improving overall network performance. Our scheme operates well regardless of network density and topology.