• Title/Summary/Keyword: 공간 축 샘플링간격

Search Result 2, Processing Time 0.018 seconds

Physical Modeling of Plucked String Based on Fixed Spatial Sampling Interval (고정된 공간 축 샘플링 간격을 적용한 뜯는 현악기의 현에 관한 물리적 모델링)

  • 강명수;김규년
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • In physical modeling of plucked string instruments, the vibration of a string is typically simulated by the linear system. Currently the Digital Waveguides of J.O.Smith[1] are widely used to get a high quality sound of the plucked string instrument. He used the wave equation to derive the Digital Waveguides and emphasized the time variable. In this thesis, new model of plucked string is proposed to improve the sound quality emphasizing the spatial variable of the wave equation. In our model, we used the fixed sampling interval which is not dependent on the speed of the wave. So we could get more detailed description of wave movement by the time variable. As a result, the new model could produce a higher quality sound of plucked string instrument.

  • PDF

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF