본 논문은 회귀분석에서 오차항의 1차 자기상관 존재 여부 및 그 값을 검정하는 방법을 베이지안 접근법으로 제안하였다. 이 방법은 모수공간의 다중분할로 인해 얻어진 여러 가설들에 대한 다중결정문제를 다중 베이즈요인에 관한 이론과 일반화 Savage-Dickey 밀도비를 이용한 사후확률 추정법을 합성하여 개발되었다. 이 방법은 기존의 검정법들에서 가능한 검정 뿐 아니라 이들이 해결할 수 없는 자기상관에 대한 다중결정문제에도 사용이 가능한데 그 효용성이 있다. 모의실험을 통하여 제안된 검정법의 유효성을 평가하였다.
Journal of the Korean Data and Information Science Society
/
v.25
no.4
/
pp.807-817
/
2014
This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.
Journal of the Korean Data and Information Science Society
/
v.27
no.5
/
pp.1203-1214
/
2016
Obesity is a risk factor for various diseases as well as itself a disease and associated with socioeconomic factors. The obesity proportion has been increasing in Korea over about 15 years so that investigation of the socioeconomic factors related with obesity is important in terms of preventation of obesity. In particular, the association between obesity and socioeconomic status varies with gender and has spatial dependency. In the paper, we estimate the effects of socioeconomic factors on obesity proportion by gender, considering the spatial correlation. Here, a conditional autoregressive model under the Bayesian framework is used in order to take into account the spatial dependency. For the real applicaiton, we use the obestiy proportion dataset at 25 districts of Seoul in 2010. We compare the proposed spatial model with a non-spatial model in terms of the goodness-of-fit and prediction measures so the spatial model performs well.
The purpose of this study is to analyse the determinants of the change in the welfare expenditure of local governments in 2015. This study analyzed the spatial correlation of welfare expenditure among neighboring local governments and determined the factors affecting the welfare expenditures. According to the results of the study, spatial correlation of welfare expenditure among local governments appears. Determinants, such as socio-economic factors, administrative factors, public financial factors are affecting the amount of the welfare expenditures, but local political factors, and local tax, last year's budgets are not correlated with the amount of local welfare expenditures. In this study, it is significant to found out that the spatial correlation of welfare expenditure among the local governments and to examine the determinants. If possible, it is necessary to analyze the time-series analysis using the multi-year welfare expenditure data, expecially self-welfare expenditures.
This study investigates the utilities of spatial analysis in the context of survey research using Geographical Information System(GIS) and Geographically Weighted Regression (GWR) which take account of spatial heterogeneity. Many social phenomena involve spatial dimension, and with the development of GIS, GPS receiver, and online location-based services, spatial information can be collected and utilized more easily, and thus application of spatial analysis in the survey research is getting easier. The traditional OLS regression models which assume independence of observations and homoscedasticity of errors cannot handle spatial dependence problem. GWR is a spatial analysis technique which utilizes spatial information as well as attribute information, and estimated using geographically weighted function under the assumption that spatially close cases are more related than distant cases. Residential survey data from a Primary Autonomous District are used to estimate a model of public service satisfaction. The findings show that GWR handles the problem of spatial auto-correlation and increases goodness-of-fit of model. Visualization of spatial variance of effects of the independent variables using GIS allows us to investigate effects and relationships of those variables more closely and extensively. Furthermore, GIS and GWR analyses provide us a more effective way of identifying locations where the effect of variable is exceptionally low or high, and thus finding policy implications for social development.
This study analyzes the regional disparity in India between 24 states over the period 1980 to 2009. The traditional regressive and spatial autoregressive models are used that includes measures of spatial effects. The results provide no evidence that convergence is valid in India. However, the results indicate that spatial interaction is an important element of state growth in India. The result of spatial analysis excluded two outliner states reveals more strong relationship between the weighted spatial income level and the state growth rates. Moreover, the results find that the coefficients of spatial lag of initial per capital and error terms are significantly negative. The coefficient of variation measures that the distribution of state income level has diverged over time. Therefore, this study concludes that the growth of regional state income does not have a tendency to converge rater than diverge. The results is rational because as the Indian economy is growing rapidly, some states grow faster than the others while initial poor states become the poorest ones, which increases regional disparity in India.
Journal of the Korean Association of Geographic Information Studies
/
v.15
no.1
/
pp.43-51
/
2012
The OLS(ordinary least squares) method is widely used in hedonic housing models. One of the assumptions of the OLS is an independent and uniform distribution of the disturbance term. This assumption can be violated when the spatial autocorrelation exists, which in turn leads to undesirable estimate results. An alterative to this, spatial econometric models have been introduced in housing price studies. This paper describes the comparisons between OLS and spatial econometric models using housing transaction prices of Busan, Korea. Owing to the approaches reflecting spatial autocorrelation, the spatial econometric models showed some superiority to the traditional OLS in terms of log likelihood and sigma square(${\sigma}^2$). Among the spatial models, the SAR(Spatial Autoregressive Models) seemed more appropriate than the SAC(General Spatial Models) and the SEM(Spatial Errors Models) for Busan housing markets. We can make sure the spatial effects on housing prices, and the reconstruction plans have strong impacts on the transaction prices. Selecting a suitable spatial model will play an important role in the housing policy of the government.
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.1
/
pp.1-18
/
2019
This research measured and visualized the spatial dependency and the spatial heterogeneity of the small business in Cheonan-si, Asan-si with $100m{\times}100m$ grids based on global and local spatial autocorrelation. First, we confirmed positive spatial autocorrelation of small business in the research area using Moran's I Index, which is ESDA(Exploratory Spatial Data Analysis). And then, through Getis-Ord $GI{\ast}$, one kind of LISA(Local Indicators of Spatial Association), local patterns of spatial autocorrelation were visualized. These verified that Spatial Regression Model is valid for the location factor analysis on small business commercial buildings. Next, GWR(Geographically Weighted Regression) was used to analyze the spatial relations between the distribution of small business, hourly mobile traffic-based floating population, land use attributes index, residence, commercial building, road networks, and the node of traffic networks. Final six variables were applied and the accessibility to bus stops, afternoon time floating population, and evening time floating population were excluded due to multicollinearity. By this, we demonstrated that GWR is statistically improved compared to OLS. We visualized the spatial influence of the individual variables using the regression coefficients and local coefficients of determinant of the six variables. This research applied the measured population information in a practical way. Reflecting the dynamic information of the urban people using the commercial area. It is different from other studies that performed commercial analysis. Finally, this research has a differentiated advantage over the existing commercial area analysis in that it employed hourly changing commercial service population data and it applied spatial statistical models to micro spatial units. This research proposed new framework for the commercial analysis area analysis.
Journal of the Korean Data and Information Science Society
/
v.28
no.1
/
pp.11-20
/
2017
In this paper, we introduced linear spatial time series (space-time autoregressive and moving average model) and nonlinear spatial time series (space-time bilinear model). Also we estimated the parameters by Kalman Filter method and made comparative studies of power of forecast in the final model. We proposed several weight matrices such as equal proportion allocation, reciprocal proportion between distances, and proportion of population sizes. For applications, we collected Mumps data at Korea Center for Disease Control and Prevention from January 2001 until August 2008. We compared three approaches of weight matrices using the Mumps data. Finally, we also decided the most effective model based on sum of square forecast error.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.3
/
pp.129-141
/
2019
In recent years, fast growing cities in Korea are showing signs of being vulnerable to more disasters as their population and facilities increase and intensify. In particular, fire is one of the most common disasters in Korea's cities, along with traffic accidents. Therefore, in this study, we analyze what type of factors affect the fire that threatens urban people. Fire data were acquired for 10 years, from 2007 to 2017, in Jinju, Korea. Spatial distribution pattern of fire occurrence in Jinju was assessed through the spatial autocorrelation analysis. First, spatial autocorrelation analysis was carried out to grasp the spatial distribution pattern of fire occurrence in Jinju city. In addition, correlation and multiple regression analysis were used to confirm spatial dependency and abnormality among factors. Based on this, OLS (Ordinary Least Square) regression analysis was performed using space weighting considering fire location and spatial location of each facility. As a result, First, LISA (Local Indicator of Spatial Association) analysis of the occurrence of fire in Jinju shows that the most central commercial area are fire department, industrial area, and residential area. Second, the OLS regression model was analyzed by applying spatial weighting, focusing on the most derived factors of multiple regression analysis, by integrating population and social variables and physical variables. As a result, the second kind of neighborhood living facility showed the highest correlation with the fire occurrence, followed by the following in the order of single house, sales facility, first type of neighborhood living facility, and number of households. The results of this study are expected to be useful for analyzing the fire occurrence factors of each facility in urban areas and establishing fire safety measures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.