• Title/Summary/Keyword: 공간 빅데이터

Search Result 302, Processing Time 0.018 seconds

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Exploring the Temporal Relationship Between Traffic Information Web/Mobile Application Access and Actual Traffic Volume on Expressways (웹/모바일-어플리케이션 접속 지표와 TCS 교통량의 상관관계 연구)

  • RYU, Ingon;LEE, Jaeyoung;CHOI, Keechoo;KIM, Junghwa;AHN, Soonwook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In the recent years, the internet has become accessible without limitation of time and location to anyone with smartphones. It resulted in more convenient travel information access both on the pre-trip and en-route phase. The main objective of this study is to conduct a stationary test for traffic information web/mobile application access indexes from TCS (Toll Collection System); and analyzing the relationship between the web/mobile application access indexes and actual traffic volume on expressways, in order to analyze searching behavior of expressway related travel information. The key findings of this study are as follows: first, the results of ADF-test and PP-test confirm that the web/mobile application access indexes by time periods satisfy stationary conditions even without log or differential transformation. Second, the Pearson correlation test showed that there is a strong and positive correlation between the web/mobile application access indexes and expressway entry and exit traffic volume. In contrast, truck entry traffic volume from TCS has no significant correlation with the web/mobile application access indexes. Third, the time gap relationship between time-series variables (i.e., concurrent, leading and lagging) was analyzed by cross-correlation tests. The results indicated that the mobile application access leads web access, and the number of mobile application execution is concurrent with all web access indexes. Lastly, there was no web/mobile application access indexes leading expressway entry traffic volumes on expressways, and the highest correlation was observed between webpage view/visitor/new visitor/repeat visitor/application execution counts and expressway entry volume with a lag of one hour. It is expected that specific individual travel behavior can be predicted such as route conversion time and ratio if the data are subdivided by time periods and areas and utilizing traffic information users' location.