• Title/Summary/Keyword: 공간 데이터마이닝

Search Result 66, Processing Time 0.026 seconds

An Efficient Algorithm for mining frequent itemsets using L2-tree (L2-tree를 이용한 효율적인 빈발항목 집합 탐사)

  • 박인창;장중혁;이원석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.259-261
    • /
    • 2002
  • 데이터마이닝 분야에서 빈발항목집합 탐사에 관한 연구는 활발히 진행되어 왔지만 여전히 많은 메모리 공간과 시간을 필요로 한다. 특히 apriori 알고리즘에 기반한 방법들은 긴 패턴이 생성될수록 지수적으로 시간과 공간이 증가한다. 최근에 발표된 fp-growth는 일반적인 데이터 집합에서 우수한 성능을 보이나 희소 데이터 집합에서 효율적인 성능을 보여주지 못한다. 본 논문에서는 길이가 2인 빈발항목집합 L2에 기반한 L2-tree 구조를 제안한다. 또한 L2-tree에서 빈발항목집합을 탐사하는 L2-traverse 알고리즘을 제안한다. L2-tree는 L2를 기반으로 하기 때문에 L2가 상대적으로 적은 희소 데이터 집합 환경에서 적은 메모리 공간을 사용하게 된다. L2-traverse 알고리즘은 별도의 추출 데이터베이스를 생성하는 FP-growth와 달리 단순히 L2-tree를 오직 한번의 깊이 우선 탐사를 통해 빈발항목집합을 찾는다. 최적화 기법으로써 길이가 3인 빈발항목집합 L3가 되지 않는 L2 패턴들을 미리 제거하는 방법으로 C3-traverse 알고리즘을 제안하며 실험을 통해 기존 알고리즘과 비교 검증한다.

  • PDF

Mining of Subspace Contrasting Sample Groups in Microarray Data (마이크로어레이 데이터의 부공간 대조 샘플집단 마이닝)

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.569-574
    • /
    • 2011
  • In this paper, we introduce the subspace contrasting group identification problem and propose an algorithm to solve the problem. In order to identify contrasting groups, the algorithm first determines two groups of which attribute values are in one of the contrasting ranges specified by the analyst, and searches for the contrasting groups while increasing the dimension of subspaces with an association rule mining strategy. Because the dimension of microarray data is likely to be tens of thousands, it is burdensome to find all contrasting groups over all possible subspaces by query generation. It is very useful in the sense that the proposed method allows to find those contrasting groups without analyst's involvement.

Study of Personalized Marketing in Internet and Mobile Computing Environment (유무선 통합 인터넷환경에서의 개별화마케팅 지원방안 연구)

  • 채승민;김남호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.749-752
    • /
    • 2003
  • 통신서비스를 이용하는 고객들은 시간, 공간, 기기의 제약을 받지않고 편리하게 서비스를 받고 싶어한다. 유무선 통합서비스는 고객과 사업자에게 다양한 혜택을 제공할 수 있다 각 서비스에 해당하는 적절한 마케팅과 고객관리를 할 수 있는 시스템이 요구된다. 본 논문에서는 개별화마케팅을 위한 사용자 관심에 기반한 적절한 광고를 제공하기 위한 개인정보 취득방법, 이들 개인정보 분석을 위해 연관관계와 군집모델 탐사를 기반으로 한 데이터마이닝 기술의 활용법, 분석된 정보를 토대로 사용자의 새로운 관심분야를 발견하고 그에 적합한 마케팅을 실시하기 위한 시스템을 제안한다.

  • PDF

A Method for Determining the Number of Clusters in Data Clustering (데이터 클러스터링에서 클러스터 수 결정방안)

  • Lee, Byung-Soo;Hong, Jiwon;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1268-1269
    • /
    • 2011
  • 데이터마이닝 분야에서는 주어진 공간상에 분포되어있는 데이터들을 분석위해 다양한 클러스터링 알고리즘이 존재한다. 그러나 대부분의 클러스터링 알고리즘에서는 클러스터 전체 개수를 미리 요구한다. 이 때문에 클러스터링 알고리즘에서 클러스터 전체개수를 미리 알아내는 것은 매우 중요하다. 본 논문에서는 데이터에 분포하는 클러스터들의 개수를 데이터의 그래프 모델을 이용한 분석으로 찾아내는 방법을 제안한다.

Travel Patterns of Transit Users in the Metropolitan Seoul (서울시 대중교통 이용자의 통행패턴 분석)

  • Lee, Keum-Sook;Park, Jong-Soo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.379-395
    • /
    • 2006
  • The purpose of this study is to analyze the spatial characteristics of travel patterns and travel behaviors of transit users in the Metropolitan Seoul area. We apply the data mining techniques to explore the travel patterns of transit users from the T-money card database which has been produced over 10,000,000 transaction records per day. The database contains the information of locations and times of origin, transfer, and destination points for each transaction as well as the informations of transit modes taken via the transaction. We develop an data mining algorithm to explore traversal patterns from the enormous information. The algorithm determines the travel sequences of each passenger, and produce the volumes of support on each points (stops) of transportation networks in the Metropolitan Seoul area. In order to visualize the spatial patterns of travel demands for transit systems we apply GIS techniques, and attempt to investigate the spatial characteristics of travel patterns and travel demand. Subway stops located in the Gangnam area appear the highest peak for the travel origin and destination, while the CBD in the Gangbuk stands at the second position. Two or three sub-peaks appear at the densely populated residential areas developed as the high-rise apartment complex. Subway stations located along the Subway Line 2, especially from Guro to Samsung receive heavy travel demand (total support), while bus stops located at the CBD in the Gangbuk stands the highest travel demand by bus.

  • PDF

Smartphone Usage Data Collection Application and Management Program for Big Data Analysis (빅데이터 분석을 위한 스마트폰 사용 데이터 수집 앱 및 관리 프로그램)

  • Jo, Seong-Min;Oh, Seung-Hyeon;Ahn, Ji-Woo;Lee, Myung-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.225-228
    • /
    • 2021
  • 본 연구는 스마트폰 중독과 관련된 다양한 분석을 위한 스마트폰 사용 앱과 관리자 웹을 개발하고자 한다. 연구방법으로 이전 연구에서 중요한 변수로 작용되었던 '화면 켠 횟수', '실사용시간-인지사용시간' 변수를 분석할 있도록 적용하여 스마트폰 사용시간, 사용량, 사용 앱, 화면 잠금을 해제한 횟수 등 다양한 데이터 수집이 가능한 앱을 개발한다. 관리자 웹은 수집된 데이터를 저장, 분석할 수 있는 공간으로 사용할 것이다. 앱에서 수집된 데이터는 서버에 전송한 후, 시각화 분석 기능을 제공하는 관리 프로그램으로 개발하여 스마트폰 중독 연구에 사용한다. 향후 데이터 수집과 사용 목적에 동의한 사용자를 모집하여 데이터를 수집하고 스마트폰 사용 패턴, 데이터마이닝, 중독 등과 관련된 다양한 분석을 할 것이다. 이를 통해 보다 정확하고 효과적인 스마트폰 중독 진단이 가능해질 것과 나아가 스마트폰 중독 치료방안 연구에 기여할 것으로 기대한다.

  • PDF

Development of Selection Model of Interchange Influence Area in Seoul Belt Expressway Using Chi-square Automatic Interaction Detection (CHAID) (CHAID분석을 이용한 나들목 주변 지가의 공간분포 영향모형 개발 - 서울외곽순환고속도로를 중심으로 -)

  • Kim, Tae Ho;Park, Je Jin;Kim, Young Il;Rho, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.711-717
    • /
    • 2009
  • This study develops model for analysis of relationship between major node (Interchange in expressway) and land price formation of apartments along with Seoul Belt Expressway by using CHAID analysis. The results show that first, regions(outer side: Gyeongido, inner side: Seoul) on the line of Seoul Belt Expressway are different and a graph generally show llinear relationships between land price and traffic node but it does not; second, CHAID analysis shows two different spatial distribution at the point of 2.6km in the outer side, but three different spatial distribution at the point of 1.4km and 3.8km in the inner side. In other words, traffic access does not necessarily guarantee high housing price since the graphs shows land price related to composite spatial distribution. This implies that residential environments (highway noise and regional discontinuity) and traffic accessibility cause mutual interaction to generate this phenomenon. Therefore, the highway IC landprice model will be beneficial for calculation of land price in New Town which constantly is being built along the highway.

A Local Association Rule Search Method from GML Data (GML데이터에서 지역적 연관규칙 탐색 기법)

  • Hong Sung-Han;Hwang Byung-Yeon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2006.05a
    • /
    • pp.37-42
    • /
    • 2006
  • GIS분야에 대한 다양한 연구가 진행됨에 따라 그 활용에 대한 관심도 확대되고 있다. Open GIS Consortium에서는 GML(Geography Markup Language)을 개발하여 이를 GIS 응용분야에 활용하고자 하는 연구가 활발히 진행되고 있다. GML데이터에서 의미 있는 정보를 추출하기 위해서는 데이터 마이닝 기법 활용이 필수적이다 최근에 데이터마이닝 기법 중 연관규칙을 이용한 탐색 방법이 제안되었다. 그러나 이 방법은 전체 데이터를 대상으로 의미 있는 정보를 탐색 하므로, 데이터 내에 포함되어 있는 부분 속성인 지리 공간적 연관성을 탐색하는데 한계를 가지고 있다. 따라서 녈 연구에서는 GML데이터에서 부분적 속성을 고려한 지역적 연관규칙 탐색 기법을 제안한다.

  • PDF

Features Reduction and Baysian Networks Learning for Efficient Medical Data Mining (효율적인 의료데이터마이닝을 위한 특징축소와 레이지안망 학습)

  • 정용규;김인철
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.258-265
    • /
    • 2002
  • 베이지안망은 기존의 방법에 비해 불확실한 상황에서도 지식을 표현하고 결론을 추론하는데 유용한 것으로 알려져 있다. 본 논문에서는 대표적인 베이지안망 분류기들을 제시하고, 동일 임상데이터에 대해 서로 다른 유형별 베이지안망 분류기들을 학습하였다. 베이지안망을 적용할 때 변수의 수가 많아짐에 따라 베이지안망의 구조를 학습하는데 탐색공간이 넓어져 어려움이 있다. 본 연구에서는 이런 탐색공간을 효율적으로 줄이기 위하여 클래스 노드의 Markov blanket에 속한 특징들로 집합을 축소하는 것을 제안하고, 실험을 통해 이 특징 축소방법이 베이지안망 분류기들의 성능을 높여 줄 수 있는지 알아보았다. 분류기들의 성능에서는 축소한 특징집합으로부터 얻은 베이지안망으로 확장한 나이브 베이지안망 분류기가 가장 우수한 정확도를 가짐을 실험을 통해 알 수 있었다.

  • PDF

Features Reduction and Baysian Networks Learning for Medical Datamining (의료데이터마이닝을 위한 특징축소와 베이지안망 학습)

  • 정용규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.595-597
    • /
    • 2004
  • 본 연구에서는 베이지안망을 기초로 불임환자의 임상 데이터에 대한 다양한 실험을 전개한다. 실험을 통해 임신여부에 영향을 주는 요인들간의 상호 의존성을 분석하고. 또 제약조건이 다른 다양한 베이지안망의 대표적 유형으로 나이브 베이지안망(NBN), 베이지안망으로 확장한 나이브 베이지안망(BAN), 일반 베이지안앙(GBN) 분류기들의 분류성능을 서로 비교 분석한다. 베이지안망을 적응할 때 변수의 수가 많아짐에 따라 베이지안망의 구조를 학습하는데 탐색공간이 넓어져 시간의 요구량이 급격히 많아진다. 따라서 이런 탐색공간을 효율적으로 줄이기 위하여 클래스 노드의 Markov blanket에 속한 특징들로 집합을 축소하는 것을 제안하고, 실험을 통해 이 특징 축소 방법이 베이지안망 분류기들의 성능을 높여 줄 수 있는지 알아본다.

  • PDF