• Title/Summary/Keyword: 공간해상도 저하

Search Result 53, Processing Time 0.028 seconds

Analysis of Accumulation/Erosion in River Using Satellite Image (인공위성영상을 이용한 하천의 퇴적/침식 분석)

  • Yang In-Tae;Kim Dong-Moon;Chun Ki-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Damage of rivers construction is serious to natural disaster by concentration rainfall in summer. Specially, increase of soil erosion breeds flood calamity of river bed accumulation and pondage decline etc., and erosion increase in upper stream shows in rivers flood of earth and sand, farm land and form of urban district burying. Flood damage investigation through on-the-spot probe until present need effective and scientific modelling techniques because is not efficient. This research wished to examine practical use of monitoring data of high resolution satellite image through satellite image analysis of various space resolution. Research analyzed abstraction possibility of soil disaster information using high resolution satellite image. Also, studied soil disaster damage present condition interpretation practical use possibility through various resolution satellite image analysis, and studied practical use of KOMPSAT image for interpretation of river topography change analysis.

Binary Image Search using Hierarchical Bintree (계층적 이분트리를 활용한 이진 이미지 탐색 기법)

  • Kim, Sung Wan
    • Journal of Creative Information Culture
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • In order to represent and process spatial data, hierarchical data structures such as a quadtree or a bintree are used. Various approaches for linearly representing the bintree have been proposed. S-Tree has the advantage of compressing the storage space by expressing binary region image data as a linear binary bit stream, but the higher the resolution of the image, the longer the length of the binary bit stream, the longer the storage space and the lower the search performance. In this paper, we construct a hierarchical structure of multiple separated bintrees with a full binary tree structure and express each bintree as two linear binary bit streams to reduce the range required for image search. It improves the overall search performance by performing a simple number conversion instead of searching directly the binary bit string path. Through the performance evaluation by the worst-case space-time complexity analysis, it was analyzed that the proposed method has better search performance and space efficiency than the previous one.

Development of compound eye image quality improvement based on ESRGAN (ESRGAN 기반의 복안영상 품질 향상 알고리즘 개발)

  • Taeyoon Lim;Yongjin Jo;Seokhaeng Heo;Jaekwan Ryu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • Demand for small biomimetic robots that can carry out reconnaissance missions without being exposed to the enemy in underground spaces and narrow passages is increasing in order to increase the fighting power and survivability of soldiers in wartime situations. A small compound eye image sensor for environmental recognition has advantages such as small size, low aberration, wide angle of view, depth estimation, and HDR that can be used in various ways in the field of vision. However, due to the small lens size, the resolution is low, and the problem of resolution in the fused image obtained from the actual compound eye image occurs. This paper proposes a compound eye image quality enhancement algorithm based on Image Enhancement and ESRGAN to overcome the problem of low resolution. If the proposed algorithm is applied to compound eye image fusion images, image resolution and image quality can be improved, so it is expected that performance improvement results can be obtained in various studies using compound eye cameras.

High-quality Texture Extraction for Point Clouds Reconstructed from RGB-D Images (RGB-D 영상으로 복원한 점 집합을 위한 고화질 텍스쳐 추출)

  • Seo, Woong;Park, Sang Uk;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.61-71
    • /
    • 2018
  • When triangular meshes are generated from the point clouds in global space reconstructed through camera pose estimation against captured RGB-D streams, the quality of the resulting meshes improves as more triangles are hired. However, for 3D reconstructed models beyond some size threshold, they become to suffer from the ugly-looking artefacts due to the insufficient precision of RGB-D sensors as well as significant burdens in memory requirement and rendering cost. In this paper, for the generation of 3D models appropriate for real-time applications, we propose an effective technique that extracts high-quality textures for moderate-sized meshes from the captured colors associated with the reconstructed point sets. In particular, we show that via a simple method based on the mapping between the 3D global space resulting from the camera pose estimation and the 2D texture space, textures can be generated effectively for the 3D models reconstructed from captured RGB-D image streams.

Efficient Image Upsampling using Frequency Resolution Expansion Schemes in DCT Domain (DCT 도메인에서의 주파수 해상도 화장 기법을 이용한 효과적인 이미지 업샘플링)

  • Park Seung-Wook;Park Ji-Ho;Jeon Byeong-Moon;Park Hyun Wook
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.505-514
    • /
    • 2005
  • Image upsampling can be performed in both spatial and frequency (transform) domain. In the spatial domain, various upsampling techniques are developed and 6-tap FIR interpolation filter is most well known method, which is embedded in many video coding standards. It can provide high subjective quality but shows low objective quality. In the transform domain, simple zero padding method can produce upsampled image easily. It shows better objective quality than 6-tap filtering, but it yields ringing effects which annoy eyes. In this paper, we present efficient upsampling method using frequency addition method in transform domain to provide better subjective and objective quality than conventional method Extensive simulation results show that the proposed algorithm produces visually fine images with high PSNR.

Virtual Cell based $B^+$-tree Index Structure of Moving Objects for Location Based Services (위치 기반 서비스를 위한 가상 셀 기반 $B^+$-tree 이동객체 색인 기법)

  • Park, Yong-Hun;Seo, Dong-Min;Song, Seok-Il;Yoo, Jae-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.185-190
    • /
    • 2010
  • 최근 위치 인식 기술과 휴대 장치의 발달로 인해 이동하는 객체를 기반으로 하는 위치 기반 서비스(Location Based Service, LBS)의 관심이 점점 증가하고 있고 그에 관련된 연구들이 활발하게 진행되고 있다. 이동 객체의 응용은 빈번하게 변경되는 이동객체의 위치정보를 효과적으로 처리할 수 있는 색인구조를 필요로 한다. 위치정보를 색인하기 위해 R-tree 기반의 색인들이 제안되었다. 하지만 R-tree는 변경보다는 검색 연산에 초점이 맞추어진 색인구조이기 때문에 잦은 변경을 다루어야 하는 이동객체 환경에 적합하지 못하다. 최근 이러한 객체의 빠른 위치 변경을 지원하는 그리드 기반의 색인 구조가 제안되었다. 하지만 셀의 객체 점유율에 따라 검색 속도가 저하되는 단점은 여전히 해결되지 못하고 있다. 이러한 단점은 객체들이 특정 영역에 몰리는 경우 또는 그리드의 해상도를 잘못 지정한 경우 더욱 부각된다. 본 논문에서는 이러한 단점을 해결하기 위해 가상 셀 기반의 색인 구조를 제안한다. 데이터 페이지에 객체의 점유율을 보장하기 위해 여러 개의 인접한 셀들의 데이터를 한 데이터 페이지에 함께 저장한다. 공간 채움 곡선을 기반으로 순서화된 셀들로 셀의 인접성을 결정한다. 또한 공간 채움 곡선의 차수를 동적으로 지정하여 객체가 집중된 셀에 대해서는 셀의 단위 크기를 작게 지정한다. 뿐만 아니라 셀을 표현하기 위한 식별자를 위해 비트를 이용한 표현식을 제안하였다. 이로 인해 노드의 팬아웃을 증가시켰고, 저장공간을 절약하였다. 실험을 통해서 제안하는 색인 기법의 우수성을 증명하였다.

  • PDF

A Basic Study on Enhancement of Input data Quality for the CFD Model Using Airborne LiDAR data (항공 LiDAR 데이터를 활용한 CFD 모델 입력자료 품질 향상에 대한 기초연구)

  • Park, Myeong-Ha;An, Seung-Man;Choi, Yun-Soo;Jeong, In-Hun;Jeon, Byeong-Kuk
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.27-38
    • /
    • 2012
  • The recent development of CFD techniques are being involved w ith Environmental Impact Assessment and Environmental DesignroThey are being applied to the Site Planning and Engineering Design works as a new trendroHowever, CFD laboratory works are not extended to the field works in Industrial Project due to inaccuracy of the data input process that is cause by absence of regional height informationsroHence, in this study, we promote to build a new initial input data processing steps and algorithms for CFD Model generation. ENVI-met model is very popular, efficient, and freely downloadable CFD model. Light Detection And Ranging (LiDAR) are well known state of art technology and dataset proving a reliable accuracy for CFD. We use LiDAR data as a input source for CFD input producing process and algorithm development and evaluation. CFD initial input data generation process and results derived from am development and set is very useful and efficient for rapid CFD input data producing and maklomore reliable CFD Model forec st for atmospheric and climatic analysis for planning and design engineering industry.

Adaptive quantization for effective data-rate reduction in ultrafast ultrasound imaging (초고속 초음파 영상의 효과적인 데이터율 저감을 위한 적응 양자화)

  • Doyoung Jang;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.422-428
    • /
    • 2023
  • Ultrafast ultrasound imaging has been applied to various imaging approaches, including shear wave elastography, ultrafast Doppler, and super-resolution imaging. However, these methods are still challenging in real-time implementation for three Dimension (3D) or portable applications because of their massive data rate required. In this paper, we proposed an adaptive quantization method that effectively reduces the data rate of large Radio Frequency (RF) data. In soft tissue, ultrasound backscatter signals require a high dynamic range, and thus typical quantization used in the current systems uses the quantization level of 10 bits to 14 bits. To alleviate the quantization level to expand the application of ultrafast ultrasound imaging, this study proposed a depth-sectional quantization approach that reduces the quantization errors. For quantitative evaluation, Field II simulations, phantom experiments, and in vivo imaging were conducted and CNR, spatial resolution, and SSIM values were compared with the proposed method and fixed quantization method. We demonstrated that our proposed method is capable of effectively reducing the quantization level down to 3-bit while minimizing the image quality degradation.

Interferometric coherence analysis using space-borne synthetic aperture radar with respect to spatial resolution (공간해상도에 따른 위성 영상레이더 위상간섭기법 긴밀도 분석)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2013
  • Recently high spatial resolution space-borne Synthetic Aperture Radar (SAR) systems have launched and have been operated successfully. Interferometric SAR (InSAR) processing with the space-based high resolution observations acquired by these systems can provide more detail information for various geodetic applications. Coherence is regarded as a critical parameter in the evaluating the quality of an InSAR pair. In this study, we evaluate the coherence characteristics of high-resolution data acquired by TerraSAR-X (X-band) and ALOS PALSAR (L-band) and intermediate-resolution data acquired by Envisat ASAR (C-band) over western Texas, U.S.A. Our coherence analysis reveals that the high-resolution X-band TSX (3.1 cm) data has a high coherence level (0.3-0.6), similar to that of the L-band ALOS PALSAR data (23.5 cm) in short temporal baselines. Further more, the TSX coherence values are significantly higher than those of the C-band (5.6 cm) Envisat ASAR data. The higher coherence of the TSX dataset is a surprising result, because common scattering theories suggest that the longer wavelength SAR data maintain better coherence. In vegetated areas the shorter wavelength radar pulse interacts mostly with upper sections of the vegetation and, hence, does not provide good correlation over time in InSAR pairs. Thus, we suggest that the higher coherence values of the TSX data reflect the data's high-resolution, in which stable and coherent scatters are better maintained. Although, however, the TSX data show a very good coherence with short temporal baseline (11-33 days), the coherences are significantly degraded as the temporal baselines are increased. This result confirms previous studies showing that the coherence has a strong dependency on the temporal baseline.

Regeneration of the Retarded Time Vector for Enhancing the Precision of Acoustic Pyrometry (온도장 측정 정밀도 향상을 위한 시간 지연 벡터의 재형성)

  • Kim, Tae-Kyoon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • An approximation of speed of sound in the measurement plane is essential for the inverse estimation of temperature. To this end, an inverse problem relating the measured retarded time data in between set of sensors and actuators array located on the wall is formulated. The involved transfer matrix and its coefficient vectors approximate speed of sound of the measurement plane by using the radial basis function with finite number of interpolation points deployed inside the target field. Then, the temperature field can be reconstructed by using spatial interpolation technique, which can achieve high spatial resolution with proper number of interpolation points. A large number of retarded time data of acoustic paths in between sensors and arrays are needed to obtain accurate reconstruction result. However, the shortage of interpolation points due to practical limitations can cause the decrease of spatial resolution and deterioration of the reconstruction result. In this works, a regeneration for obtaining the additional retarded time data for an arbitrary acoustic path is suggested to overcome the shortage of interpolation points. By applying the regeneration technique, many interpolation points can be deployed inside the field by increasing the number of retarded time data. As a simulation example, two rectangular duct sections having arbitrary temperature distribution are reconstructed by two different data set: measured data only, combination of measured and regenerated data. The result shows a decrease in reconstruction error by 15 % by combining the original and regenerated retarded time data.