• Title/Summary/Keyword: 공간모형

Search Result 2,931, Processing Time 0.024 seconds

Busan Housing Market Dynamics Analysis with ESDA using MATLAB Application (공간적탐색기법을 이용한 부산 주택시장 다이나믹스 분석)

  • Chung, Kyoun-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.461-471
    • /
    • 2012
  • The purpose of this paper is to visualize the housing market dynamics with ESDA (Exploratory Spatial Data Analysis) using MATLAB toolbox, in terms of the modeling housing market dynamics in the Busan Metropolitan City. The data are used the real housing price transaction records in Busan from the first quarter of 2006 to the second quarter of 2009. Hedonic house price model, which is not reflecting spatial autocorrelation, has been a powerful tool in understanding housing market dynamics in urban housing economics. This study considers spatial autocorrelation in order to improve the traditional hedonic model which is based on OLS(Ordinary Least Squares) method. The study is, also, investigated the comparison in terms of $R^2$, Sigma Square(${\sigma}^2$), Likelihood(LR) among spatial econometrics models such as SAR(Spatial Autoregressive Models), SEM(Spatial Errors Models), and SAC(General Spatial Models). The major finding of the study is that the SAR, SEM, SAC are far better than the traditional OLS model, considering the various indicators. In addition, the SEM and the SAC are superior to the SAR.

Trip Generation Model based on Geographically Weighted Regression (공간가중회귀분석을 이용한 통행발생모형)

  • Kim, Jin-Hui;Park, Il-Seop;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.101-109
    • /
    • 2011
  • In most of the urbanized cities, socio-economic attributes tend to cluster as patterns of similarity in space, namely spatial autocorrelation, by agglomeration forces. The classical linear regression model, the most frequently adopted in the trip generation step, cannot sufficiently represent this effect. In order to take into account the effect properly, we need a model which adequately deals with the spatial dependence patterns. In this study, the Geographically Weighted Regression (GWR) model is adopted as an alternative method for the local analysis of relationships in multivariate data sets; that is GWR extends this traditional regression framework by estimating local rather than global parameters. This study shows the existence of spatial effects in the production and attraction of home base/non-home based trips through the GWR model using travel data collected in Daegu metropolitan area. Furthermore, LISA is employed to verify the fact that the local spatial autocorrelation exists.

The Effects of Neighborhood Segmentation on the Adequacy of a Spatial Regression Model (인근지역 범위 설정이 공간회귀모형 적합에 미치는 영향)

  • Lee, Chang Ro;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.6
    • /
    • pp.978-993
    • /
    • 2013
  • It can be advantage as well as disadvantage to use the spatial weight matrix in a spatial regression model; it would benefit from explicitly quantifying spatial relationships between geographical units, but necessarily involve subjective judgment while specifying the matrix. We took Incheon City as a study area and investigated how the fitness of a spatial regression model changed by constructing various spatial weight matrices. In addition, we explored neighborhood segmentation in the study area and analyzed any influence of it on the model adequacy of two basic spatial regression models, i.e., spatial lagged and spatial error models. The results showed that it can help to improve the adequacy of models to specify the spatial weight matrix strictly, that is, interpreting the neighborhood as small as possible when estimating land price. It was also found that the spatial error model would be preferred in the area with serious spatial heterogeneity. In such area, we found that its spatial heterogeneity can be alleviated by delineating sub-neighborhoods, and as a result, the spatial lagged model would be preferred over the spatial error model.

  • PDF

Space Time Data Analysis for Greenhouse Whitefly (온실가루이의 공간시계열 분석)

  • 박진모;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.403-418
    • /
    • 2004
  • Recently space-time model in spatial data analysis is widly used. In this paper we applied this model to analysis of greenhouse whitefly. For handling time component, we used ARMA model and autoregressive error model and for outliers, we adapted Mugglestone's method. We compared space-time models and geostatistic model with MSE and MAPE.

Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models (공간회귀모형을 이용한 대구경북 지역 단위면적당 아파트 매매가격 예측)

  • Lee, Woo Jung;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.561-568
    • /
    • 2015
  • In this study we predict apartment prices per unit in Daegu-Gyeongbuk areas by spatial lag and spatial error models, both of which belong to so-called spatial regression model. A spatial weight matrix is constructed by k-nearest neighbours method and then the models for the apartment prices in March, 2012 are fitted using the weight matrix. The apartment prices in March, 2013 are predicted by the fitted spatial regression models and then performances of two spatial regression models are compared by RMSE (root mean squared error), RRMSE (root relative mean squared error), MAE (mean absolute error).

Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes (공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관)

  • Park, Jincheol
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.353-360
    • /
    • 2015
  • Various statistical models have been proposed over the last decade for spatially correlated Gaussian outcomes. The spatial linear mixed model (SLMM), which incorporates a spatial effect as a random component to the linear model, is the one of the most widely used approaches in various application contexts. Employing link functions, SLMM can be naturally extended to spatial generalized linear mixed model for non-Gaussian outcomes (SGLMM). We review popular SGLMMs on non-Gaussian spatial outcomes and demonstrate their applications with available public data.

Kalman-Filter Estimation and Prediction for a Spatial Time Series Model (공간시계열 모형의 칼만필터 추정과 예측)

  • Lee, Sung-Duck;Han, Eun-Hee;Kim, Duck-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2011
  • A spatial time series model was used for analyzing the method of spatial time series (not the ARIMA model that is popular for analyzing spatial time series) by using chicken pox data which is a highly contagious disease and grid data due to ARIMA not reflecting the spatial processes. Time series model contains a weighting matrix, because that spatial time series model influences the time variation as well as the spatial location. The weighting matrix reflects that the more geographically contiguous region has the higher spatial dependence. It is hypothesized that the weighting matrix gives neighboring areas the same influence in the study of the spatial time series model. Therefore, we try to present the conclusion with a weighting matrix in a way that gives the same weight to existing neighboring areas in the study of the suitability of the STARMA model, spatial time series model and STBL model, in the comparative study of the predictive power for statistical inference, and the results. Furthermore, through the Kalman-Filter method we try to show the superiority of the Kalman-Filter method through a parameter assumption and the processes of prediction.

Spatial Analyses and Modeling of Landsacpe Dynamics (지표면 변화 탐색 및 예측 시스템을 위한 공간 모형)

  • 정명희;윤의중
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.227-240
    • /
    • 2003
  • The primary focus of this study is to provide a general methodology which can be utilized to understand and analyze environmental issues such as long term ecosystem dynamics and land use/cover change by development of 2D dynamic landscape models and model-based simulation. Change processes in land cover and ecosystem function can be understood in terms of the spatial and temporal distribution of land cover resources. In development of a system to understand major processes of change and obtain predictive information, first of all, spatial heterogeneity is to be taken into account because landscape spatial pattern affects on land cover change and interaction between different land cover types. Therefore, the relationship between pattern and processes is to be included in the research. Landscape modeling requires different approach depending on the definition, assumption, and rules employed for mechanism behind the processes such as spatial event process, land degradation, deforestration, desertification, and change in an urban environment. The rule-based models are described in the paper for land cover change by natural fires. Finally, a case study is presented as an example using spatial modeling and simulation to study and synthesize patterns and processes at different scales ranging from fine-scale to global scale.

  • PDF

Estimation Methods for Linear Spatial Model on Lattice (Lattice형 공간정보의 선형모형 추정방법)

  • Gwon, O-Ryong;Yeom, Jun-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.153-159
    • /
    • 1996
  • Linear models for spatial data are proposed by example in the paper. This method was introduced to Korea for the first time in the early part of 1990's. The correlation of spatial patterns is computed by Moran Index., and then correlogram is proposed as the method to identify correlation of spatial patterns. Due to computational difficulties with ML, an alternative estimator has been used as an eigenvalue method.

  • PDF

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.