문화유산의 현색(顯色)은 제작기법 해석, 보존처리 활용, 상태 모니터링의 중요한 기초 자료이다. 이 연구에서는 권응수 초상을 대상으로 디지털 색관리시스템 기반 색재현 과정을 체계적으로 정립하고, 문화유산 기록 및 보존에 적합한 현색 활용방안을 제안하였다. 전체적인 색재현 과정은 촬영 환경 세팅, 색기준차트 측정, 디지털 사진 촬영, 색보정, 색공간 설정 순으로 진행되었다. 연구 결과, 사진기 제조사 프로파일이 적용된 디지털 이미지는 현색과 비교하여 평균 𝜟10.1의 색차를 보인 반면, 디지털 색재현 이미지는 평균 𝜟1.1의 색차를 보여 현색과 거의 유사한 것을 알 수 있다. 이 결과는 디지털 사진 촬영 환경과 조건을 최적화했더라도 디지털 사진기 제조사의 보정 알고리즘에 의존할 경우 대상 문화유산의 현색 기록에 어려움이 있는 것을 의미한다. 따라서 문화유산은 RAW 이미지 기반의 색보정 및 색공간 설정을 통해 디지털 색재현이 필요하며, 이는 현색 기록화를 위해 매우 중요한 과정이다. 또한 디지털 색재현을 통한 현색 기록은 문화유산의 보존상태 평가와 보존처리 및 복원의 중요한 기초자료가 될 수 있으며, 퇴색 및 변색 현상의 모니터링을 위한 기준 데이터로 활용성이 높을 것으로 판단된다.
본 논문은 농림축산식품부에서 구축한 농경지 전자지도인 팜맵을 딥러닝을 이용하여 농경지 속성정보인 논, 밭, 인삼, 과수, 시설, 비경지의 속성 정보를 판독하는 방안을 제안한다. 팜맵은 항공 및 위성 영상을 이용하여 현실 세계의 농경지를 디지털화하여 작물 생산 현황 파악과 드론 운영에 공간정보로 활용되고 있으며, 판독 매뉴얼을 작성하여 매년 사람을 통해 농경지의 경계를 구획하고 속성을 판독하여 갱신한다. 사람을 통한 농경지 속성판독은 사람의 판독 역량과 경험에 따라 차이를 보이며, 판독 오류는 예산과 공간적 시간적 한계로 직접 현장에 갈 수 없어 현실적으로 검증이 쉽지 않다. 팜맵은 5가지의 농경지 속성의 이미지에 해당 객체의 위치 정보와 클래스 정보를 가지고 있어 적합한 AI의 기법은 인스턴스 분할 모델인 ResNet50으로 실험을 진행하였으며, 딥러닝을 이용한 농경지 속성판독과 사람에 의한 속성판독 결과를 비교하여, 향후 다른 결과를 나타내는 속성판독에 집중하여 기술을 개발한다면 속성 오류를 줄이고 농경지 전자지도의 정확성 향상에 큰 역할을 할 것으로 기대된다.
최근 들어 지리 정보 시스템이 발전함에 따라 경로 검색, 주변 정보 검색, 응급 서비스 등을 제공하는 위치 기반 서비스, 텔레매틱스 등의 새로운 응용 서비스 개발에 대한 관심과 연구가 증대되고 있다. 위치 기반 서비스 및 텔레매틱스에서 사용되는 시공간 데이타베이스에서의 사용자의 검색은 시간 축을 현재의 시간으로 고정하고 공간 및 비공간 속성을 검색하기 때문에 시간 축에 대한 검색 범위가 넓을 경우에는 이를 효율적으로 처리하기 어렵다. 이를 해결하기 위하여 이동 객체의 위치 데이타를 요약하는 기법인 스냅샷이 소개되었다. 그러나, 이러한 스냅샷 기법은 저장해야 되는 총간 영역이 넓을 경우 저장 공간이 많이 필요하며 검색에 자주 사용되지 않는 불필요한 영역까지 스냅샷을 생성하므로 저장 공간 및 메모리를 많이 사용하게 된다. 이에 본 논문에서는 기존의 스냅샷 기법의 단점을 극복하기 위하여 이전에 공간 클러스터링을 위해 사용되던 2차원의 공간 해시 알고리즘을 시공간으로 확장한 해시-기반 시공간 클러스터링 알고리즘(H-STCA)과 과거 위치 데이타로부터 이동 객체 경로 탐색을 위한 지식을 추출하기 위해 H-STCA 알고리즘에 근거한 지식 추출 알고리즘을 제안한다. 그리고, 대용량의 이동 객체 데이터에 대한 검색 시간, 저장 구조 생성 시간, 최적 경로 탐색 시간 등에서 H-STCA를 사용한 스냅샷 클러스터링 방법, 기존의 시공간 인덱스 방법, 스냅샷 방법과의 성능평가에 대하여 설명한다. 성능평가 결과로 H-STCA를 사용한 스냅샷 클러스터링 방법은 기존의 시공간 인덱스 방법이나 스냅샷 방법 보다 이동 객체의 개수가 증가하면 할수록 성능 향상이 더욱 큰 것으로 나타났다.
뇌의 하부 구조인 해마의 전역적 부피 감소와 국부적 형상 변화는 정신의학적 질환에 깊게 관련되어 있다. 해마 구조에 관한 형상 분석 연구는 크게 해마 형상 표현 모델을 구축하고, 이러한 형상 표현으로부터 형상 유사성을 계산하는 과정으로 구성된다. 본 논문에서는 메쉬, 복셀, 골격 데이터를 포함하는 복합적인 옥트리 기반의 형상 표현을 이용하여 해마의 형상을 분석하기 위한 새로운 방법을 제시한다. 우선 해마에 관한 MRI 데이터를 입력으로 받아, 마칭큐브 알고리즘을 사용하여 다해상도 메쉬 모델을 구축한다. 이렇게 구성된 다각형 모델은 깊이맵 기반의 복셀화 방법을 이용하여 중간 단계의 이진 복셀 데이터로 변환된다. 그리고 변환된 복셀 데이터로부터 슬라이스 기반의 골격화 방법에 의하여 해마의 3차원 골격을 추출한다. 그런 후에 옥트리 기반의 다해상도 형상 표현을 얻기위해 해마의 메쉬, 복셀, 골격 데이터를 계층적으로 공간 분할하여 저장하고, 광선 추적 기반의 메쉬 샘플링 방법을 적용하여 샘플 메쉬 데이터를 추출한다. 최종적으로, 형상간 유사성 측정을 위하여 추출된 골격으로부터 방사되는 광선들과 충돌되는 각 샘플 메쉬 쌍에 대하여 $L_2$과 하우스도르프 거리를 계산하고 인터랙티브한 국부적 형상 분석을 지원하기 위하여 마우스 피킹 인터페이스를 채택한다. 이것은 형상의 국부적 변화에 대하여 다양한 해상도에 기반한 형상 분석을 가능하게 한다. 본 논문에서는 실험을 통하여, 제시한 형상 분석 방법이 회전과 스케일 등의 변환에 강인하고, 특히 형상의 국부적 변화 정도를 정확도를 유지하면서 빠르게 평가하는데에 효과적임을 확인하였다. 경로의 수신 신호가 완전 동기 된 수신 신호임을 확인하였다.omonas aeruginosa PA01과 $82\%$로 가장 높은 유사성을 보였고 Pseudomonas arvilla C-1와는 $71\%,$ Pseudomonas putida KT2440과는 $59\%,$ 그리고 Pseudomonas sp. CA10과는 $53\%$의 상동성이 각각 존재하는 것으로 확인하였다.)을 가지고 있음이 확인되었다. 사람에 직접적인 유해성을 가지고 있는 지 확인하기 위해 사람 방광 유래의 T-24세포와 장내 표피 유래의 Caco-2세포에 대한 부착능을 시험하였을 때, 16균주$(42.1\%)$가 T-24방광 세포에, 그리고 17균주$(44.7\%)$가 Caco-2장세포에 대해 강한 부착능을 나타내었다. 특히 11균주$(28.9\%)$는 두 세포 모두에 강한 부착능을 가지고 있었다. Filter mating method를 수행하여 이들 균주들의 독소 생산 유전자와 항생제 내성 유전자가 사람에서 분리된 균주로 전달되는 것을 확인할 수 있었다. 본 실험의 결과는 설사 중상을 나타내는 돼지로부터 분리된 용혈성 E. coli의 독성과 세포 부착능력, 그리고 항생제 내성간의 상호 연관성을 보여주지 않았으나 동물 분리 세균의 항생제 내성과 독소 생산 능력이 유전자 전달을 통해서 뿐만 아니라 세균의 직접 접촉에 의해서도 인체로 전달될 수 있는 것을 보여주는 것이다.다. 본 연구를 토대로 장시간의 체외순환에서는 신장기능을 대표하는 수치들에도
유비쿼터스 컴퓨팅 환경을 구현하기 위해서 가장 핵심이 되는 기술은 USN(Ubiquitous Sensor Network)기술로써 RFID(Radio Frequency Identification)와 무선 센서 네트워크(Wireless Sensor Network WSN)를 이용한 다양한 센서 기술과 프로세서 집적 기술 그리고 무선 네트워크 기술을 이용해서 실제 물리적 환경 정보를 원격에서 손쉽게 수집하고 모니터링 하는 것을 가능하게 함으로써 기존 가상 공간의 IT 기술을 다양한 실제 환경에서 확대할 수 있도록 한다. 그러나 RFID와 WSN은 이러한 기술적 유사성과 상호 영향에도 불구하고 별 개의 연구로 인식되었으며 RFID와 WSN의 기술적인 융합에 대한 연구는 미비한 수준이다. 이러한 문제점을 인식한 EPCglobal에서는 국제 표준인 EPCglobal Network를 기반으로 RFID와 WSN 기술을 효율적으로 통합/연동할 수 있는 EPC 센서 네트워크(EPC Sensor Network)를 제안하였다. 제안된 EPC 센서 네트워크는 미들웨어에서 복합 이벤트 처리(Complex Event Processing) 기법을 이용하여 RFID와 WSN을 통해 발생되는 데이터를 단일 환경에서 통합하고, 발생된 이벤트를 EPCglobal Network를 기반으로 연동하는 기술이다. 하지만 이러한 EPC 센서 네트워크는 미들웨어에서 복합 이벤트를 검출하기 위해 복합 이벤트를 구성하는 모든 기본 이벤트가 발생하지 못하는 경우에도 계속적인 검사를 수행하기 때문에 연산 비용이 증가되는 문제점이 있다. 또한 센서 데이터의 표현을 위해 RFID 태그의 EPC를 기반으로 센서 데이터를 하나의 결합된 쌍으로 표현한다. 이것은 센서 데이터를 처리하는데 있어 반드시 EPC가 있어야 함을 의미한다. 즉, 센서 데이터만을 위한 관리 기능은 제공하지 못하는 문제점이 있다. 이러한 EPC 센서 네트워크의 문제점들을 해결하기 위하여 본 논문에서는 RFID/WSN 통합 관리 시스템을 제안한다. 제안하는 RFID/WSN 통합 관리 시스템은 첫 번째, RFID와 WSN 데이터를 인터넷 표준 프로토콜인 SIP(Session Initiation Protocol) 기반의 통합 관리 시스템을 제안하였다. 두 번째, 미들웨어에서 불필요한 복합 이벤트 검출 연산을 위하여 복합 이벤트의 최소 조건을 정의하고 조건을 만족하는 경우에만 복합 이벤트를 검출하는 알고리즘을 제안하였다. 제안하는 기법들의 성능을 평가하기 위하여 SIP 기반의 통합관리시스템을 구현하여 성능을 평가하였다.
얼굴 인식은 얼굴 영상에서 특징을 추출하고, 이를 다양한 알고리즘을 통해 학습하여 학습된 데이터와 새로운 얼굴 영상에서의 특징과 비교하여 사람을 인식하는 기술로 인식률을 향상시키기 위해서 다양한 방법들이 요구되는 기술이다. 얼굴 인식을 위해 학습 단계에서는 얼굴 영상들로 부터 특징 성분을 추출해야하며, 이를 위한 기존 얼굴 특징 성분 추출 방법에는 선형판별분석(Linear Discriminant Analysis, LDA)이 있다. 이 방법은 얼굴 영상들을 고차원의 공간에서 점들로 표현하고, 클래스 정보와 점의 분포를 분석하여 사람을 판별하기 위한 특징들을 추출하는데, 점의 위치가 얼굴 영상의 화소값에 의해 결정되므로 얼굴 영상에서 불필요한 영역 또는 변화가 자주 발생하는 영역이 포함되는 경우 잘못된 얼굴 특징이 추출될 수 있으며, 특히 일반 카메라 영상을 사용하여 얼굴인식을 수행하는 경우 얼굴과 카메라간의 거리에 따라 얼굴 크기가 다르게 나타나 최종적으로 얼굴 인식률이 저하된다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 일반 카메라를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역에서 Gabor Filter를 이용하여 계산된 얼굴 외곽선을 통해 불필요한 영역을 제거한 후 일정 크기로 얼굴 영역 크기를 정규화하였다. 정규화된 얼굴 영상을 선형 판별 분석을 통해 얼굴 특징 성분을 추출하고, 인공 신경망을 통해 학습하여 얼굴 인식을 수행한 결과 기존의 불필요 영역이 포함된 얼굴 인식 방법보다 약 13% 정도의 인식률 향상이 가능하였다.
본 논문에서는 하드웨어 효율이 100%가 되는 2차원 이산 웨이블렛 변환 필터 구조를 제안한다. 전체 구조는 두 채널 QMF PR Lattice 필터로 구성된 1차원 DWT 필터 4개로 구성되었다. 1 레벨부터 J 레벨까지 순차적으로 수행함으로써 메모리 사용을 최소화 하면서도 하드웨어 효율이 100%가 되도록 설계하였으며 필터 입력 데이터를 구성해주는 DFC구조와 DCU구조를 제안하였다. 인접한 4개의 데이터를 동시에 입력 받아 처리함으로써 동시에 행방향과 열방향 DWT를 수행하므로 $N{\times}N$ 이미지를 처리하는데 $N^2(1-2^{-2J})/3$ 사이클이 소요되며 이 때 필요한 저장공간은 약 2MN-3N이다. 기존의 2D DWT 구조와 비교해 보았을 때 하드웨어 효율과 동작 속도가 향상되었으며 두 개의 1D DWT를 직렬로 연결하므로 임계경로를 감소시키기 위해서 최대 4 단까지 파이프라인을 적용하여 임계경로를 향상시킬 수 있다. 제안된 구조는 VerilogHDL로 모델링되고 동부아남 $0.18{\mu}m$ 표준셀로 합성되어 검증되었다.
암종 분류은 현장의 지질학적 또는 지반공학적 특성 파악을 위해 요구되는 매우 기본적인 행위이나 암석의 성인, 지역, 지질학적 이력 특성에 따라 동일 암종이라 하여도 매우 다양한 형태와 색 조성을 보이므로 깊은 지질학적 학식과 경험 없이는 쉬운 일은 아니다. 또한, 다른 여러 분야의 분류 작업에서 딥러닝 영상 처리 기법들이 성공적으로 적용되고 있으며, 지질학적 분류나 평가 분야에서도 딥러닝 기법의 적용에 대한 관심이 증대되고 있다. 따라서, 본 연구에서는 동일 암종임에도 다양한 형태와 색을 갖게 되는 실제 상황을 감안하여, 정확한 자동 암종 분류를 위한 딥러닝 기법의 적용 가능성에 대해 검토하였다. 이러한 기법은 향후에 현장 암종분류 작업을 수행하는 현장 기술자들을 지원할 수 있는 효과적인 툴로 활용 가능할 것이다. 본 연구에서 사용된 딥러닝 알고리즘은 매우 깊은 네트워크 구조로 객체 인식과 분류를 할 수 있는 것으로 잘 알려진 'ResNet' 계열의 딥러닝 알고리즘을 사용하였다. 적용된 딥러닝에서는 10개의 암종에 대한 다양한 암석 이미지들을 학습시켰으며, 학습 시키지 않은 암석 이미지들에 대하여 84% 수준 이상의 암종 분류 정확도를 보였다. 본 결과로 부터 다양한 성인과 지질학적 이력을 갖는 다양한 형태와 색의 암석들도 지질 전문가 수준으로 분류해 낼 수 있는 것으로 파악되었다. 나아가 다양한 지역과 현장에서 수집된 암석의 이미지와 지질학자들의 분류 결과가 학습데이터로 지속적으로 누적이 되어 재학습에 반영된다면 암종분류 성능은 자동으로 향상될 것이다.
정규화 변환은 시계열 시퀀스를 구성하는 엔트리들의 전체적인 패턴을 분석하는데 매우 유용하다. 본 논문에서는 단일 색인을 사용한 정규화 변환 지원 서브시퀀스 매칭 방법을 제안한다. 기존의 정규화 변환 지원 서브시퀀스 매칭 방법은 다양한 길이의 질의 시퀀스를 지원하기 위하여 여러 개의 색인을 생성해야 하고, 이에 따라 색인 저장 공간의 오버헤드와 색인 관리의 오버헤드가 발생한다. 본 논문에서는 하나의 색인을 사용하면서도 다양한 길이의 질의 시퀀스에 대한 정규화 변환을 지원하는 효율적인 서브시퀀스 매칭 방법을 제안한다. 이를 위하여, 우선 정규화 변환을 일반화한 포함-정규화 변환(inclusion-normalization transform) 개념을 제시한다. 포함 정규화 변환이란 색인에 저장할 윈도우에 대해서 해당 윈도우를 포함하는 서브시퀀스의 평균과 표준편차로 정규화하는 것으로서, 기본적인 정규화 변환을 윈도우 및 서브시퀀스 개념을 사용하여 확장한 것이다. 다음으로, 포함-정규화 변환을 기존 서브시퀀스 매칭 연구에 적용하기 위한 이론적 근거를 정리로서 제시하고 증명한다. 그리고, 이 방안을 구현하기 위한 색인 구성 알고리즘 및 서브시퀀스 매칭 알고리즘을 각각 제시한다. 실제 주식 데이터에 대한 실험 결과, 제안한 방법은 기존 방법에 비해 최대 $2.5{\sim}2.8$배까지 성능을 향상 시킨 것으로 나타났다. 본 논문에서 제안한 정규화 변환 지원 서브시퀀스 매칭은 정규화 변환 이외의 다른 변환을 지원하는 서브시퀀스 매칭으로 일반화 될 수 있다. 따라서, 제안한 방법은 정규화 변환을 포함하는 많은 다른 종류의 변환을 지원하는 서브시퀀스 매칭에 폭넓게 적용될 수 있는 좋은 연구결과라 사료된다.
동적 웹 컨텐츠 제공에서 고객을 위한 추천서비스에 이르는 인터넷 기반의 전자상거래 애플리케이션에서는 고객이 어떤 성향을 가지고 있는가에 대한 정보를 획득하는 것이 중요하다. 웹 개인화의 대표적인 기술인 협력적 석과는 사용자의 정보를 정적인 프로파일 형태로 저장하여 사용자의 성향 변화를 빨리 획득할 수 없다. 또한 사용자의 명시적 평가 의존성, 확장성 부족, 다차원 공간 데이터에 대한 적용 어려움 둥의 문제점을 가지고 있다. 이와 같은 단점을 해결하기 위한 해결 방안으로 웹 사용 정보 마이닝(web usage mining)이 쓰이고 있다. 웹 사용 정보 마이닝은 서버에 축적된 웹 사용 데이터(web usage data)를 이용하여 패턴을 발견하는 기술이다. 특히 연관 규칙 생성 알고리즘으로 웹 사용 패턴(web usage pattern)을 찾고 패턴을 클러스터링하는 기술이 사용되고 있다. 그러나 연관 규칙 생성 알고리즘은 많은 수의 패턴들을 찾고 또 유용하지 못한 패턴을 발견하는 단점이 있다. 본 논문에서는 검증된 웹 사용 패턴을 이용한 동적 사용자 프로파일 생성 방법을 제안한다. 먼저 패턴 발견을 위해 연관 규칙 생성 알고리즘인 Apriori를 이용하고 사용자 프로파일을 위한 클러스터를 생성하기 위해 ARHP를 채택하였다. 클러스터를 생성하기 전에 Dempster-Shafer 이론을 이용하여 유용하지 못한 패턴을 제거하는 패턴 검증 과정을 수행한다. 검증된 패턴을 이용하여 클러스터를 생성하고 사용자의 현재 활성화된 세션에 따라 동적으로 사용자 프로파일이 생성된다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.