고객관계관리(CRM)나 마케팅과 같은 경영방식에서도 대용량의 공간 데이터베이스를 사용하는 지리정보시스템(GIS)과 같은 응용분야를 접목하고 있다. gCRM은 지리정보시스템과 고객관계관리를 결합한 것으로, 이러한 실정을 단적으로 보여 주고 있는 경영방식이다. gCRM은 대용량의 데이터베이스로부터 관심 있는 분야를 찾아내고 분석하게 된다. 그러기 위해서는 데이터마이닝이라는 기술이 필요하다. 하지만, gCRM은 일반적인 데이터베이스뿐만 아니라 공간 데이터베이스 역시 많이 사용되어진다. 이러한 공간데이터베이스로부터 관심 있는 부분이나 관계 그리고 특성 등을 찾아내기 위해서는 공간데이타마이닝이 요구된다. 본 논문에서는 gCRM 솔루션들의 기능을 중심으로 다양한 공간데이타마이닝 기법과 어떠한 관계가 있는지를 살펴봄으로써 gCRM과 공간데이타마이닝이 접목할 수 있는 부분에 대하여 정리하였다.
최근 들어 공간 지식을 활용한 다양한 서비스들이 개발됨에 따라, 공간 객체들 간의 정성적 공간 관계를 표현한 정성 공간 지식의 수요가 크게 늘어나고 있다. 공간 객체 각각의 세부 정보를 담은 대용량의 공간 데이터들은 개방화가 점차 확대되고 있으나, 공간 객체들 간의 정성적 관계를 표현한 정성 공간 지식은 상대적으로 확보하기 어려운 실정이다. 본 논문에서는 하둡 맵리듀스 병렬 분산 컴퓨터 환경을 이용해, 대용량의 공간 데이터로부터 공간 객체들 간의 위상 관계와 방향 관계를 나타내는 정성 공간 지식을 자동으로 추출하는 공간 지식 추출기를 제안한다. 본 논문에서 제안하는 대용량의 공간 지식 추출기는 맵리듀스 프레임워크를 기반으로 R-트리 색인과 범위 질의들을 효과적으로 이용함으로써, 웹 스케일 수준의 정성 공간 지식을 매우 효율적으로 추출해낸다. Open Street Map (OSM) 공개 데이터를 이용한 성능 분석 실험을 통해, 본 논문에서 제안하는 대용량 공간 지식 추출기의 높은 성능을 확인할 수 있었다.
최근 공간 데이터를 사용하는 응용 프로그램이 증가하면서 대용량의 공간 데이터를 효율적으로 저장하고 관리하기 위한 공간 데이터베이스가 요구되고 있다. 이러한 공간 데이터베이스는 객체 관계형 데이터베이스의 사용자 정의 타입과 사용자 정의 함수를 이용하여 기존의 데이터베이스를 확장하는 형태로 개발될 수 있다. 하지만, 대부분의 객체 관계형 데이터베이스는 공간 인덱스와 같은 사용자 정의 인덱스를 확장하는 일반적인 방법을 제공하고 있지 않기 때문에 객체 관계형 데이터베이스를 확장한 공간 데이터베이스는 공간 영역 질의의 성능이 떨어지는 문제점이 있다. 본 연구에서는 객체 관계형 데이터베이스를 확장한 공간 데이터베이스에서 공간 인덱스를 개발하고 객체 관계형 데이터베이스에 통합시킬 수 있는 방법인 GiST와 Relational Indexing을 비교/분석하고 향후 이들 방법을 이용하여 공간 인덱스를 구현하고 공간 영역 질의에 대한 성능을 비교하여 보다 적합한 방법을 제시하고자 한다.
GIS 분야에서 다루는 공간 데이터는 대부분 2차원의 데이터이다. 현실 공간에 존재하는 3차원 객체의 2차원 정보만을 취하거나 혹은 2차원 공간으로 투영하는 등의 방법으로 데이터를 저장한다. 이러한 방법은 정보의 손실로 인한 데이터 활용범위가 축소되고, 현실 공간을 정확하게 반영하지 못하는 문제가 있다. 최근 3차원 공간 데이터를 저장, 관리 가능한 DBMS가 개발되고, 3차원 데이터에 대한 관심과 요구가 높아가고 있다. 하지만 3차원 데이터를 단순 저장만 가능할 뿐 공간 연산에 대한 연구가 미흡한 실정이다. 본 연구에서는 3차원 공간 모델을 이용하여 공간 데이터베이스 표준에서 정의하고 있는 공간 관계 연산을 설계하였다. 공간 데이터 모델로는 OGC에서 제시한 GML3에서 정의하는 모델을 사용하였고, 공간 관계 연산에 대한 설계 도구로는 공간 관계를 연산하는데 가장 좋은 방법으로 알려진 DE-9IM을 이용하였다.
공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.
우리가 생활하고 있는 공간에 대한 표현이라고 할 수 있는 공간정보는 위치와 매우 밀접한 관계를 가지고 있다. 기본적으로 위치 값의 표현은 공간적 체계를 기반으로 하고 있으며, 효율적이고 정확한 측위를 위한 중요한 정보로 활용되기도 한다. 위치, 측위 그리고 공간정보의 관계에 있어 공간에 대한 의미있는 정보의 전달과 활용의 효율성 등을 위해 표준화는 필수적인 부분이라고 할 수 있다. 이에, 본 고에서는 위치 및 측위, 그리고 그 활용 과정에서 참고될 수 있는 공간정보 표준화 동향에 대해 정리해본다.
공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.
한국어에서 절들의 의존관계를 밝히는 작업은 구문 분석 작업에서 가장 어려운 작업들 중에 하나로 인식되고 있다. 절의 의존관계를 파악하는 일은 표면적으로 나타나는 정보만을 가지고 처리할 수 없고, 의미 정보 같은 추가적인 정보가 필요할 것으로 판단하고 처리해왔다. 본 논문에서는 추가적인 정보를 사용하지 않고, 문장에서 얻을 수 있는 표면적인 정보만을 사용하여 절들 간의 의존관계를 파악하는 방법을 제안한다. 문장에서 얻을 수 있는 표면적인 정보는 문장의 구문 정보(tree structure information)와 어휘 및 거리 정보를 가지고 있는 정적인 정보(static information)로 나누어 볼 수 있다. 본 논문에서는 절들 간의 의존 관계 파악을 위하여 구문 정보 및 어휘정보 등을 하나 이상의 커널의 결합해서 사용하는 복합 커널(composite kernel)을 제안하고, 이 커널에 맞는 다양한 인스턴스 공간의 설정을 제안한다. 실험 데이터는 구문 트리로 표현된 STEP 2000코퍼스를 사용하였다. 실험은 최적화된 인스턴스 공간을 절들 간의 의존관계 파악 및 문장 수준에서 성능을 검정하였다. 관계 인스턴스 공간은 절들 간의 연결을 기준으로 Path-enclosed Tree와 Flattened Path-enclosed Tree로, 하부절(관형절)의 표현 유무로 Complete Tree, Contex-sensitive Tree, Simple Tree로 나누어 각각의 조합으로 실험하여 결정하였다. 그리고 결정된 인스턴스 공간에서 복합커널을 사용한 방법이 좋은 성능을 발휘함을 보였다.
공간적 관계정보(spatial relation)가 언어적 표상시스템과 비언어적 표상시스템에서 어떻게달라지는가를 범주화 모델의 원형이론 모델을 적용하여 알아보고자 하였다. 이전의 연구들에 따르면 공간적 관계정보에 대한 프로토타입이 언어적 범주와 비언어적 범주에서 다르다는 연구 결과(Crawford 등 2000, Huttenlocher 등 1991)와 동일하다. (Hayward & Tarr 1995)는 상반된 연구 결과가 제기되고 있다. 하지만 이전 연구들에서의 문제점은 언어/비언어 표상체계 간의 편향을 통제하지 못했기 때문에 과제에 따라 서로 다른 결과가 나온 것이라고 볼 수 있다 본 연구에서는 두 대상간의 관계정보를 문장으로 제시한 조건, 그림으로 제시한 조건, 그리고 두 조건을 혼합한 조건을 사용하여 편향에 의한 효과를 제거하고자 하였다. 실험은 각 조건에 따라 짝으로 구성된 자극을 학습한 후 검사자극을 공간적 관계정보를 다양하게 하여 학습자극과 동일한지 아닌지를 판단하게 하였다. 실험결과 관계정보를 언어적으로 제시한 조건과 비언어적으로 제시한 조건간에 대상의 위치에 따른 반응시간의 경향성에서 차이가 없었으며, 대상이 단어인지 그림인지에 따라서 반응시간에서 통계적으로 차이가 나타났다. 그리고 두 표상체계에서 공간적 관계에 대한 프로토타입을 분석한 결과 수직축을 중심으로 전형성 효과가 나타나는 것을 알 수 있었다.
딥러닝에서 층을 공유하여 작업에 따라 변하지 않는 정보를 사용하는 multi-task learning이 다양한 자연어 처리 문제에 훌륭하게 사용되었다. 그렇지만 우리가 아는 한 공유 공간의 상태와 성능과의 관계를 조사한 연구는 없었다. 본 연구에서는 공유 공간과 task 의존 공간의 자질의 수와 오염 정도가 성능에 미치는 영향도 조사하여 공유 공간과 성능 관계에 대해서 탐구한다. 이 결과는 multi-task를 진행하는 실험에서 공유 공간의 역할과 성능의 관계를 밝혀서 시스템의 성능 향상에 도움이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.