행렬 곱셈은 다양한 사회연결망을 포함한 빅 데이터 분석에 핵심이 되는 연산 중 하나이다. 본 연구에서는 행렬 곱셈 방법 중 내적과 행-행 곱셈에 대한 성능 분석과 실제 사회연결망 데이터 셋을 이용한 행렬 곱셈 시간을 분석한다. 본 연구의 실험환경에서 행렬 곱셈 방법 중 행-행 곱셈이 내적보다 약 125 배 빠르다는 것을 확인했고, 실제 사회연결망 데이터 셋을 행렬 곱셈했을 때의 시간은 읽기, 쓰기 등 저장장치 접근 시간이 행렬 곱셈 전체 수행 시간의 약 90% 이상 차지한다는 것을 확인했다. 따라서 사회연결망 데이터 분석을 위한 행렬 곱셈에서 저장 장치 접근 시간을 줄이는 것이 전체 계산 수행 시간을 줄이는 것의 핵심임을 이야기한다.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.46
no.9
/
pp.33-38
/
2009
The group CSD (GCSD) multiplier was recently proposed based on the variation of canonic signed digit (CSD) encoding and partial product sharing. This multiplier provides an efficient design when the multiplications are performed only with a few predetermined coefficients (e.g., FFT). In many DSP applications such as FFT, the (2W-1)-bit product obtained from W-bit multiplicand and W-bit multiplier is quantized to W-bits by eliminating the (W-1) least-significant bits. This paper presents an error compensation method for a fixed-width GCSD multiplier that receives a W-bit input and produces a W-bit product. To efficiently compensate for the quantization error, the encoded signals from the GCSD multiplier are used for the generation of error compensation bias. By Synopsys simulations, it is shown that the proposed method leads to up to 84% reduction in power consumption and up to 79% reduction in area compared with the fixed-width modified Booth multiplier.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.272-274
/
2003
유한체 GF(2$^{m}$ ) 상의 산술 연산 중 곱셈 연산의 효율적인 구현은 암호이론 분야의 어플리케이션에서 매우 중요하다. 본 논문에서는 All-One 다항식에 의해 정의된 GF(2$^{m}$ ) 상의 효율적인 Bit-Parallel 정규기저 곱셈기를 제안한다. 게이트 및 시간 면에서 본 논문의 곱셈기의 complexity는 이전에 제안된 같은 종류의 곱셈기 보다 낮거나 동일하다. 그리고 본 논문의 곱셈기는 이전 곱셈기 보다 더 모듈적이어서 VLSI 구현에 적합하다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2002.11a
/
pp.84-87
/
2002
최근 정보보호의 중요성이 커짐에 따라 암호이론에 대한 관심이 증가되고 있다. 이 중 Galois 체 GF(2$^{m}$ )은 대부분의 암호시스템에서 사용되며, 특히 공개키 기반 암호시스템에서 주로 사용된다. 이들 암호시스템에서는 GF(2$^{m}$ )에서 정의된 연산, 즉 덧셈, 뺄셈, 곱셈 및 곱셈 역원 연산을 기반으로 구축되므로, 이들 연산을 고속으로 계산하는 것이 중요하다. 이들 연산 중에서 곱셈 역원이 가장 time-consuming하다. Fermat의 정리를 기반으로 하고, GF(2$^{m}$ )에서 정규기저를 사용해서 곱셈 역원을 고속으로 계산하기 위해서는 곱셈 횟수를 감소시키는 것이 가장 중요하며, 이와 관련된 방법들이 많이 제안되어 왔다. 이 중 Itoh와 Tsujii가 제안한 방법[2]은 곱셈 횟수를 O(log m)까지 감소시켰다. 본 논문에서는 Itoh와 Tsujii가 제안한 방법을 이용해서, m=2$^n$인 경우에 곱셈 역원을 고속으로 계산하는 방법을 제안한다. 본 논문의 방법은 필요한 곱셈 횟수가 Itoh와 Tsujii가 제안한 방법 보다 적으며, m-1의 분해가 기존의 방법보다 간단하다.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.162-165
/
2003
RSA 등의 공개키 암호화 시스템에서는 매우 큰 정수에 대해서 모듈러 멱승을 수행한다. 그러므로 모듈러 멱승을 효율적으로 구현하기 위하여 많은 연구가 진행되어 왔다. 모듈러 멱승을 소프트웨어적으로 구현할 경우 시간적인 제약을 극복하지 못하므로, 이를 하드웨어로 구현하려는 연구도 많이 이루어지고 있는 추세이다. 몽고메리 곱셈 알고리즘은 비용이 많이 드는 모듈러 연산을 효율적으로 처리하고 있으므로 하드웨어적 구현에 현재 널리 쓰이고 있다. 몽고메리 곱셈 알고리즘은 내부적으로 당연히 곱셈연산을 주로 사용하기 때문에, 어떤 곱셈기를 사용하느냐가 성능에 영향을 미치게 한다. 본 논문에서는 몽고메리 곱셈기를 다양한 32비트 곱셈기를 적용해 보고, 성능 및 면적을 측정하였다. 이러한 측정 결과를 토대로 특정 응용에 알맞은 32비트 곱셈기를 적절히 선택하여 설계할 수 있을 것으로 기대한다.
In this paper I investigated the historical developments of the algorithms for multiplication of natural numbers. Through this analysis I tried to describe more concretely what is to understand the common algorithm for multiplication of natural numbers. I found that decomposing dividends and divisors into small numbers and multiplying these numbers is the main strategy for carrying out multiplication of large numbers, and two decomposing and multiplying processes are very important in the algorithms for multiplication. Finally I proposed some implications based on these analysis.
To acquire the hints of the development of children's multiplication strategies, this study tried to find the differences between the students who learned multiplication and the students who didn't. And we also tried to explore their acquired computational resources. As a result, we confirm that there is a certain direction on the development of children's multiplication strategies according to their grades and the level of acquirement of mathematical knowledge. Moreover, we comprehend that commutative law is an important part of the strategies on two-digit multiplication and that acquisition of the computational resources must precede the learning of multiplication strategies. In the end part, this article proposes a new taxonomy of strategies for multiplication. To support our proposal, we integrated the prior researches with our findings.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.6
/
pp.1188-1193
/
2004
So far, there have been grossly 3 types of studies on GF(2m) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. Serial multiplication method was first suggested by Mastrovito (1), to be known as the basic CF(2m) multiplication architecture, and this method was adopted in the array multiplier (2), consuming m times as much resource in parallel to extract m times of speed. In 1999, Paar studied further to get the benefit of both architecture, presenting the hybrid multiplication architecture (3). However, the hybrid architecture has defect that only complex ordo. of finite field should be used. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software. The implemented GF(2m) multiplier shows t times as fast as the traditional one, if we modularized the numerical expression by t number of parts.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.2
/
pp.328-332
/
2006
Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only partial-sum block in the hardware. So far, there have been grossly 3 types of studies on GF($2^m$) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.11
/
pp.1623-1629
/
2022
Matrix multiplication is a fundamental operation widely used in science and engineering. There is an approximate matrix multiplication method as a way to reduce the amount of computation of matrix multiplication. Approximate matrix multiplication determines an appropriate probability distribution for selecting columns and rows of matrices, and performs approximate matrix multiplication by selecting columns and rows of matrices according to this distribution. Probability distributions are generated by considering both matrices A and B participating in matrix multiplication. In this paper, we propose a method to generate a probability distribution that selects columns and rows of matrices to be used for approximate matrix multiplication, targeting only matrix A. Approximate matrix multiplication was performed on 1000×1000 ~ 5000×5000 matrices using existing and proposed methods. The approximate matrix multiplication applying the proposed method compared to the conventional method has been shown to be closer to the original matrix multiplication result, averaging 0.02% to 2.34%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.