• 제목/요약/키워드: 곱셈에 관한 역원

검색결과 6건 처리시간 0.017초

특수한 정규기저를 이용한 유한체위에서의 역원 계산 알고리즘에 관한 연구 (Algorithms for Computing Inverses in Finite Fields using Special ONBs)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제9권8호
    • /
    • pp.867-873
    • /
    • 2014
  • 유한체 연산에서 MONB를 사용하면 곱셈 역원 계산시에 대량의 제곱계산이 필요하므로 역원을 계산하는 데에 긴 시간이 필요하게 된다. 이에 본 논문에서는 바탕체 $GF(2^{2n})$ 위의 확대체 $GF(2^{2^nm})^*$에서 특수한 정규기저를 사용하여 역원을 구하는 저 비용의 알고리즘을 제안한다. 제안하는 알고리즘을 사용하면 곱셈 역원 계산에는 $nb(2^nm-1)+w(2^nm-1)-2$번의 곱셈과 $2^n-1$번의 제곱연산이 소요되며, H/W에서 구현한 결과 Itoh 등의 방법 보다 곱셈역원 계산속도가 빠르게 나타났다.

유한체위에서 정규기저의 고속생성과 저비용 연산 알고리즘의 구현에 관한 연구 (On Implementations of Algorithms for Fast Generation of Normal Bases and Low Cost Arithmetics over Finite Fields)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.621-628
    • /
    • 2017
  • 유한체위에서 사칙연산의 H/W 구현의 효율성은 사용하는 유한체의 기저 선택에 의해서 크게 좌우된다. 그러한 H/W 구현의 효율성의 관점에서 보면, 정규기저가 가장 적절한 이유는, 표수가 2인 유한체 $GF(2^n)$의 원소를 GF(2)위에서 정규기저로 표현하면, 원소의 제곱은 단순하게 좌표의 순환이동이 되기 때문이다. 본 논문에서는, 모든 유한체에서 관용기저로 부터 정규기저로 고속으로 변환하는 알고리즘을 소개하였으며 그 알고리즘을 이용한 H/W 구현결과와 우리의 방법으로 구현한 정규기저를 이용하여, 유한체 $GF(2^n)$위에서 두 원소의 곱셈과 역원을 구하는 효율적인 알고리즘에 따른 프로그램과 H/W 구현결과를 제시하였다.

고등학교 10-가 교과서 복소수 단원에 관한 논리성 분석연구 (A Search for an Alternative Articulation and Treatment on the Complex Numbers in Grade - 10 Mathematics Textbook)

  • 양은영;이영하
    • 대한수학교육학회지:학교수학
    • /
    • 제10권3호
    • /
    • pp.357-374
    • /
    • 2008
  • 본 연구는 현재 고등학교 1학년에서 처음 소개되는 복소수 단원의 복소수의 정의와 연산, 그 연산에 대한 성질 등 교과서의 서술 방식이 학생들의 '수준'과 교육과정의 흐름에 맞게 논리적으로 서술되어 있는지 알아보고자 하였다. 여기서 학생들의 '수준'이란 실수에서 복소수로의 새로운 수 체계의 확장에 따른 대수적 구조를 파악하고 이해할 수 있는 수준으로 가정한다. 즉, 고등학교 1학년 교과서 전반의 전체적인 흐름을 볼 때 복소수 단원의 목표는 새로운 수의 확장에 따른 대수적 구조의 보존을 이해하고 파악하는 것이므로 이러한 목표에 맞게 복소수의 정의와 연산, 그 연산에 대한 성질이 교과서에서 서술되는 방식이 수학적인 입장에서 보았을 때 논리적인 비약(gap)이나 순환논증의 오류를 가지지 않고 적절하게 서술하고 있는지를 살펴보고자 한 것이다. 본 연구는 이런 관점에서 16종 교과서를 분석하여 크게 다섯까지의 분석 대상을 찾아내었다. 첫째는 허수 단위 i의 도입과 음수의 제곱근, 둘째는 복소수의 정서방식에서 실수와 순허수의 정의 방식, 셋째는 복소수의 사칙 연산, 넷째는 복소소의 연산에 관한 성질에서의 대소 관계와 역원의 표현 방법, 마지막으로 대수적 구조의 보존에 관한 것이다. 본 연구에서 주요 관점에서 살펴본 위의 5가지 대상에 관한 교과서의 서술방식은 논리적 정확성의 문제와 순환논리의 오류가 생길 수 있는 가능성이 있다고 판단되었고, 연구자가 일부 논리적 비약(gap)으로 판단한 것이 있는데, 이는 오류가 아닐 수 있으나 학생들이 이해하는 데에 있어 논리적으로 전후가 맞지 않는 전개과정 이라고 판단되었기 때문이다.

  • PDF

유한체에서의 원시 정규기저 알고리즘의 구현과 응용에 관한 연구 (AN ALGORITHM FOR PRIMITIVE NORMAL BASIS IN FINITE FIELDS)

  • 임종인;김용태;김윤경;서광석
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 1992년도 정기총회및학술발표회
    • /
    • pp.127-130
    • /
    • 1992
  • GF(2m) 이론은 switching 이론과 컴퓨터 연산, 오류 정정 부호(error correcting codes), 암호학(cryptography) 등에 대한 폭넓은 응용 때문에 주목을 받아 왔다. 특히 유한체에서의 이산 대수(discrete logarithm)는 one-way 함수의 대표적인 예로서 Massey-Omura Scheme을 비롯한 여러 암호에서 사용하고 있다. 이러한 암호 system에서는 암호화 시간을 동일하게 두면 고속 연산은 유한체의 크기를 크게 할 수 있어 비도(crypto-degree)를 향상시킨다. 따라서 고속 연산의 필요성이 요구된다. 1981년 Massey와 Omura가 정규기저(normal basis)를 이용한 고속 연산 방법을 제시한 이래 Wang, Troung 둥 여러 사람이 이 방법의 구현(implementation) 및 곱셈기(Multiplier)의 설계에 힘써왔다. 1988년 Itoh와 Tsujii는 국제 정보 학회에서 유한체의 역원을 구하는 획기적인 방법을 제시했다. 1987년에 H, W. Lenstra와 Schoof는 유한체의 임의의 확대체는 원시정규기저(primitive normal basis)를 갖는다는 것을 증명하였다. 1991년 Stepanov와 Shparlinskiy는 유한체에서의 원시원소(primitive element), 정규기저를 찾는 고속 연산 알고리즘을 개발하였다. 이 논문에서는 원시 정규기저를 찾는 Algorithm을 구현(Implementation)하고 이것이 응용되는 문제들에 관해서 연구했다.

  • PDF

중학교 수학 수업에서 정수의 사칙계산 지도를 위한 직관적 모델의 역할에 관한 연구 (On the Role of Intuitive Model for Teaching Operations of Integers in the Middle School Mathematics Class)

  • 김익표
    • 한국학교수학회논문집
    • /
    • 제11권1호
    • /
    • pp.97-115
    • /
    • 2008
  • 고등학교 수학 수업에서는 실수 전체의 집합에서 뺄셈은 빼는 수의 덧셈의 역원을 더하고 나눗셈은 나누는 수의 곱셈의 역원을 곱하는 형식적인 관점으로 다룬다. 본 논문에서는 정수의 사칙계산 지도에 있어서 중학교 수학 수업에서 사용되는 직관적 모델(수직선 모델, 셈돌 모델)과 고등학교 수학 수업에서 제시되는 형식적 관점과의 연계에 대하여 논의하고자 한다. 직관적 모델을 이용하여 정수의 뺄셈을 덧셈을 이용하여 나타내는 방법의 의미를 재조명하고 이를 바탕으로 (음수)${\times}$(음수)가 양수임을 지도하는 새로운 방안을 제안하고자 한다. 직관적 모델의 일관성 있는 활용에 바탕을 두고 Treffers(1986)와 Freudenthal(1991)이 제안한 수평적 수학화(horizontal mathematization)의 과정을 통하여 정수의 사칙계산을 지도하는 이 방법은 중학교와 고등학교에서 정수의 사칙계산 수업에 참여하는 교사와 학생들 모두에게 나타날 수 있는 단절(박임숙, 2001)을 제거할 수 있는 방안이 될 것이다. 또 이것은 중 고등학교에서 다루는 수 체계들이 대학과정 대수학에서 다루는 추상적인 수 체계(group, ring, field)와 계통성을 가진 하나의 개념구조를 형성한다는 사실을 학생들이 인지할 수 있는 밑바탕이 될 것이다.

  • PDF

학교수학에서의 대수적 구조 지도에 대한 소고 (A study on the teaching of algebraic structures in school algebra)

  • 김성준
    • 한국학교수학회논문집
    • /
    • 제8권3호
    • /
    • pp.367-382
    • /
    • 2005
  • 본 연구는 학교수학에서 대수적 구조(군)의 지도에 관한 논의를 담고 있다. 이를 위해 먼저 Bruner가 제시한 지식의 구조에 대해 논의하고, 그 내용을 학교대수의 지도와 관련지어 살펴본다. 또한 대수적 구조 가운데 군 개념을 중심으로 하여 이와 관련된 선행연구를 Piaget, Freudenthal, Dubinsky, Burn 등의 논의에서 검토해본다. 그리고 초등수학에서부터 고등학교 수학까지 군 개념과 관련된 내용이 어떻게 표현되고 있는지를 살펴본다. 학교수학에서 군 개념과 관련된 내용은 초등수학에서부터 시작되는데, 초등수학의 경우 항등원, 교환법칙, 결합법칙 등을 수의 맥락에서 찾아볼 수 있다. 중학교 수학에서는 덧셈과 곱셈 연산에 있어서 항등원, 역원, 교환법칙, 결합법칙이 보다 구체적으로 제시되고 있으며, 이러한 규칙은 등식의 성질과 이항, 일차방정식의 풀이 등을 통해 살펴볼 수 있다. 고등학교 수학에서는 이항연산을 비롯한 여러 영역에서 군 개념을 포함하는 대수적 구조가 제시되고 있다. 이에 비해 학교대수에서는 이러한 주제들을 통합적으로 구성하려는 시도가 이루어지지 않고 있으며 각각의 내용이 독립적으로 다루어지고 있다. 본 연구에서는 학교대수에서 군 개념과 관련된 내용들을 검토함으로써 대수적구조(군) 측면에서 이러한 내용들을 종합해보고자 한다.

  • PDF