• Title/Summary/Keyword: 골프 그린

Search Result 75, Processing Time 0.018 seconds

Mesotrione and Seeding Rate Effects to Recover Kentucky Bluegrass Contaminated by Creeping Bentgrass (Creeping bentgrass에 침입된 Kentucky bluegrass 회복을 위한 Mesotrione과 Kentucky bluegrass 덧파종 효과)

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.64-68
    • /
    • 2012
  • Creeping bentgrass (Agrostis stolonifera L.) is one of the highest maintained turfgrass but often problematic especially for Kentucky bluegrass fairway. Mesotrione is one of selective herbicide that is firstly registered for corn (Zea mays L.) and provides preemergence and postemergence control of broadleaf and annual grassy weeds. Although mesotrione is effective to eradicate area contaminated by creeping bentgrass, protracted time is required to recover damaged area by rhizome extension of Kentucky bluegrass. Overseeding is typically used to fill bare or damaged areas using appropriate turf species to create a uniform turfgrass surface. The objectives of this study were to evaluate mesotrione and seeding rate effects to recover Kentucky bluegrass contaminated by creeping bentgrass. Six treatments consisted of three mesotrione rates and two Kentucky bluegrass seeding rates. The mesotrione rate were 0, 0.05 and 0.10 m $ml^{-2}$. Two seeding rate of to Kentucky bluegrass 'Midnight' were 15 and 30 g $m^{-2}$. Mesotrione application and Kentucky bluegrass overseeding at the same time is helpful to damage creeping bentgrass but not for establishment of Kentucky bluegrass to refill damaged area. To maximize mesotrione effects, temperature above $20^{\circ}C$ would be recommended based on this study.

Interpreting Soil Tests for Turfgrass (잔디 토양 분석의 해석)

  • Christians, Nick;Joo, Young-Kyoo;Lee, Jeong-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.223-235
    • /
    • 2006
  • Soil testing laboratories unfamiliar with turfgrasses will often overestimate the plant's need for phosphorus and underestimate the need for potassium. This is partly due to differences in rooting between grasses and many garden plants and crops. The grasses are generally more efficient in extracting phosphorus from the soil, reducing their need for phosphorus fertilizer. The fact that crop yield is often the primary objective in field crop production, and is usually of little interest in turfgrass management, may affect soil test interpretation for potassium. Potassium levels above those required for maximum tissue yield of grasses may improve stress tolerance and turfgrasses will usually benefit from higher applications of this element. There are also diffrrences in soil testing philosophies. Some laboratories use the sufficiency level of available nutrients(SLAN) approach, whereas others prefer the basic cation saturation ratio(BCSR) approach. Some will use a combination of the two methods. The use of the BCSR theory easily lends itself to abuse and questionable fertilizer applications and products are sometimes recommended citing imbalances in cation ratios. The usefulness of the BCSR ratio theory of soil testing varies with soil texture and interpretations on tests performed on sand-based media are particularly a problem. Other soil testing problems occur when sand-based media used on sports fields and golf greens contain free calcium carbonate. The ammonium acetate extractant at pH 7.0 dissolves excessive amounts of calcium that can bias cation exchange capacity measurements and measurements of cation ratios. Adjusting the pH of the extractant to 8.1 can improve the accuracy of the testing procedure for calcareous media.

Effect of Animal Organic Soil Amendment on Growth of Korean Lawngrass and Kentucky Bluegrass (동물성 유기질 개량재가 들잔디 및 캔터키 블루그래스 잔디생육에 미치는 효과)

  • Koh, Seuk-Koo;Tae, Hyun-Sook;Ryu, Chang-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • Many soil amendments have been used nowadays to improve physical and chmical condition of turf soil, which might ultimately optimize turfgrass growth in golf courses. This study was carried out to Investigate the effects of new organic soil amendment containing pig excreta 50% and sawdust 50% on growth of zoysiagrass (Zoysia japonica L.) and kentucky bluegrass (Poa pratensis L.) in greenhouse. Three applicable treatments with soil mixtures of 10, 20, and 30% (v/v) animal organic soil amendment (AOSA) with sand, were tested for chemical property, physical property, visual quality and root length of zoysiagrass and Kentucky bluegrass. As results, application of $10{\sim}30%$ AOSA mixtures were proper to grow turfgrass in soil nutrition. Especially, the treatment with 20% AOSA mixtures showed 0.7% in organic matter, which meets to green standard of USGA. Also, 30% AOSA mixtures was 1.1% in organic matter, which might be desirable for zoysiagrass-planted golf courses in Korea. It was turned out that addition of AOSA decreased the hydraulic conductivity in soil physical property Because the sand possess high hydraulic conductivity, it is recommended to combine $10{\sim}30%$ AOSA with sand in order to sustain soil balance. The treatment with $10{\sim}30%$ AOSA noticeably increased visual quality of both zoysiagras and Kentucky bluegrass during 90 days. However, treatments with either 20% or 30% AOSA were effective to develop root length of zoysiagrass but treatments with 20% AOSA were more effective than that of 30% AOSA mixtures to promote root length of Kentucky bluegrass at 60 days. In conclusion, considering all vital factors such as visible quality, root growth, organic matter content, and economical efficiency, was taken, it is recommended that a $20{\sim}30%$ mixture of AOSA with sand is good for the growth of zoysiagrass and 20% mixture for Kentucky bluegrass.

Characteristics and Correlation between Green Management Practices and Speed in Korean Golf Courses (한국의 골프 코스 그린의 관리 및 스피드 특성과 상관에 관한 연구)

  • 이상재;심경구;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.29-43
    • /
    • 2000
  • This study is carried out to investigate the cahracteristics of green management practices and green speed(i.e., ball-roll distance) on 129 Golf Courses in Korea, and to explain the effects of managemet practices that affect green speed. Data collected from green-keepers were subjected to frequency, correlation analysis, and multi-regression analysis using SPSSWIN(Statistical Package for the Social Science). The results are as follows. 1. In spring mowing height, 3.5-4 mm appeared the highest frequency(44.4%) and 4-4.5mm mowing height appeared the high frequency(41.0%). In summer mowing height, 4.5-5mm appeared the highest frequency(51.3%). In fall mowing height, 4-4.5mm appeared the highest frequency(41.0%). 2. In N-fertilizing amount of February and November, 0(zero) g/$m^2$ appeared the highest frequency. In N-fertilizing amount, of June and July 0-2 g/$m^2$ appeared the highest frequency. In N-fertilizing amount, of March, May, August, and September 2-4 g/$m^2$ appeared the highest frequency. In N-fertilizing amount, of October 2-4 or 6-8 g/$m^2$ appeared the highest frequency. 3. In spring topdressing times, 3-6 times appeared the highest frequency(52.6%). In spring topdressing amount, more than 2mm appeared the highest frequency(35.9%). In summer topdressing tierms, 0-3times appeared the highest frequency(71.8%). In summer topdressing amount, 0.5-1mm appeared the highest frequency(46.2%). In fall topdressing times, 0-3times appeared the highest frequency(47.4%). In fall topdressing amount, more than 2mm appeared the highest frequency(35.9%). 4. In spring irrigation tiems, 3-4times/a week appeared the highest frequency (30.6%). In spring irrigation amount, the irrigation below 5mm/day under appeared the highest frequency(38.7%). In summer irrigation times, 4-7times/ a week appeared the highest frequency(38.9%). In summer irrigation amount, 5-10mm/a day appeared the highest frequency(45.2%). In fall irrigation times, 2-3times/a week appeared the highest frequency(36.1%). In fall irrigation amount, the irrigation below 5mm/a day under appeared the highest frequency(45.2%). 5. In spring aeration times, 2 times appeared the highest frequency(55.2%). In spring aeration depth, 5-10mm appeared the highest frequency(81.6%). In fall aeration times, 1 time appeared the highest frequency(82.5%). In fall aeration depth, 5-10mm appeared the highest frequency(86.8%). 6. In spring green speed, 1.98-2.28 or 2.59-2.89mm appeared the highest frequency(32.7%). In summer green speed, 1.98-2.28mm appeared the highest frequency (46.9%). In fall green speed, 1.98-2.28mm appeared the highest frequency(38.8%). 7. The factors which affect green speed were mowing height, N-fertilizing, season, topdressing, irrigation, and aeration. Vertical mowing did not affect green speed. The order of the relevant important factors was mowing height >: N-fertilizing > season > topdressing > irrigation > aeration. Mowing height and N-fertilizing were the most important factors in green speed. As mowing height decreased, green sped always increased. As total N-fertilizing amount decreased, green speed increased. In summer, green sped decreased remarkably. As topdressing times increased and the topdressing amount decreased, green sped increased. As irrigation times increased and irrigation amount decreased, green speed increased.

  • PDF

Blue-green algae as a Potential agent Causing Turf Leaf Disease (잔디 엽병을 유발하는 잠재인자로서의 남조류(Blue-Green algae)에 대한 관찰보고)

  • Park, Dae-Sup;Lee, Hyung-Seok;Hong, Beom-Seok;Choi, Byoung-Man;Cheon, Jae-Chan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.161-170
    • /
    • 2008
  • Recently irregular dark-colored patches were found on the Kentucky teeing ground in a golf course in Gyunggi providence. Interestingly, blue-green algae from the leaf tissue sample containing black spot-stained symptoms were largely observed through microscopic study. In general, algae present on the upper soil surface or in the upper layer of root zone form dark brown layers of scum or crust, which invoked harmful effects to turf growth such as poor drainage, inhibition of new root development. In this observation, unlike the algae were sometime found in senescing leaves on contacted soil in July and August, the blue-green algae were detected within black spot-stained Kentucky bluegrass leaf tissues including leaf blade, ligule, auriclea as well as leaf sheath. The blue-green algae were also detected on the leaf and stem tissue adjacent to the symptomatic leaf tissues. Two species of blue-green algae, Phomidium and Oscillatoria, were greatly observed. Oscillatoria species was more commonly notified in all samples. In addition, the two species were found on a putting green showing yellow spot disease at another golf course in Gyunggi providence. The data from chemical control assay revealed that chemicals such as propiconazole, iprodione, and azoxystrobin decreased blue-green algae population and leaf spots, which finally resulted in enhanced leaf quality. All taken together, we strongly suggested that the disease-like phenomenon by blue-green algae might be very closely mediated with infection/translocation process in relation with turfgrass. It indicates that blue-green algae in turf management may play an adverse role as a secondary barrier as well as a pathogenic agent. This report may be helpful for superintendents to recognize and understand the fact that algae control should be provided more cautiously and seriously than we did previously in upcoming golf course management.