• Title/Summary/Keyword: 골조시공순서

Search Result 4, Processing Time 0.015 seconds

Structure and Construction Technology Analysis about Construction Sequence Change for Superstructure Construction Period Reduction in Top-down Method (역타공법 중심의 골조 공기단축을 위한 시공시퀀스 변경에 따른 구조해석 및 요소기술 분석)

  • Park, Yong-Hyeon;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.101-109
    • /
    • 2019
  • The purpose of this study is to improve a general Top-Down construction process for superstructure construction period reduction. In a general Top-Down construction sequence, the ground floor slab is set up first. Subsequently, 1st basement level construction including core walls is constructed. Initiation of the ground level superstructure gets waited until then. In this study, removable deck plate installation on the bottom of the core walls of ground level is preceding the concrete casting, therefore, ground level superstructure construction is able to get started earlier. Up to first typical floor concrete casting, total of seventy-two working(calendar) days will be resulted in a reduction from the total construction periods.

Applications of Construction Sequence Analyses to Prototype Models of Twisted Tall Buildings (비틀림 초고층 프로토타입 모델에 대한 시공단계해석의 적용)

  • Choe, Mi-Mi;Kim, Jae-Yo;Eom, Tae-Sung;Jang, Dong-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • With regard to complex-shaped tall buildings whose plans and constructions have been gradually on the increase, this study was aimed to analyze their structural behaviors during construction by applications of construction sequences analyses to prototype models. For twisted tall buildings, total 18 models of with three conditions of a lateral load-resisting system, a twisting angle, and a construction method were selected. A diagrid system and a braced tube system were applied as a lateral load-resisting system. For each lateral load-resisting system, three types of plan with $0^{\circ}$, $1^{\circ}$, and $2^{\circ}$ twisting angles and three construction methods with construction sequences of exterior tube and interior frame were assumed. The structural performances of tall buildings under constructions were analyzed with results of lateral displacements from construction sequence analyses. Also, construction performances of the construction period and the maximum lift weight were compared.

크리프와 건조수축을 고려한 철근콘크리트 기둥과 동바리의 축력 재분배 해석법

  • 김선영;이태규;김진근;이수곤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.629-636
    • /
    • 2001
  • To apply the research results to the design and the construction of the high rise buildings, long-term behavior of reinforced concrete structure have been widely studied. However, shoring and reshoring at early ages have not been considered in the most of studies. The removal of forms and shores has been dealt with one construction sequence. i.e. the deformation occurred at the early age before the removal of shore has been neglected. In this paper, two-dimensional frame analysis program for long-term behavior of reinforced concrete was developed. In the developed program, construction sequence including the settlement and the removal of shores is considered to predict axial force variation due to forms ,shores, and time-dependent concrete stiffness. Analysis results show that the time-dependent axial force of shores is reduced, and the redistributed axial force of the interior column is greater than the value by elastic analysis and that of the exterior column is smaller. In order to demonstrate the validity of this program, the test frame was constructed in sequence of the placement of concrete, form removal, reshoring, shore removal, and the application of additional load. The proposed program predicts experimental results well.

Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM) (DSM을 활용한 타워크레인 양중계획 최적화에 관한 연구)

  • Kim, Seungho;Kim, Sangyong;Jean, Jihoon;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Tower crane (T/C) is one of the major equipment that is highly demanded in construction projects. Especially, most high-rise building projects require T/C to perform lifting and hoisting activities of materials. Therefore, lifting plan of T/C needs to reduce construction duration and cost. However, most lifting plan of the T/C in construction sites has still performed depending on experience and intuition of the site manager without systematic process of rational work. Dependency structure matrix (DSM) is useful tool in planning the activity sequences and managing information exchanges unlike other existing tools. To improve lifting plan of T/C efficiently, this study presents a framework for the scheduling T/C using DSM through the case study in real world construction site. The results of case study showed that the scheduling T/C using DSM is useful to optimize the T/C lifting plan in terms of easiness, specially in the typical floor cycle lifting planning.