• Title/Summary/Keyword: 골재품질

Search Result 371, Processing Time 0.037 seconds

A Study on the Qualities of Recycled Fine Aggregate and Properties of Recycled Concrete Producted by the Drying Manufacturing Method (건식제조법에 의해 생산된 고품질 재생잔골재의 품질 및 재생콘크리트의 성상에 관한 연구)

  • Jang Jong Ho;Lee Dong Heck;Moon Hyung Jae;Na Chul Sung;Joo Ji Hyun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.364-367
    • /
    • 2004
  • The purpose of this study is to investigate quality of recycled fine aggregate manufactured by drying manufacturing system which is the manufacture method of high quality recycled fine aggregate, and to analyze on the fresh, hardened and durability properties of recycled concrete using it. Therefore it is to present the fundamental data for structural application of recycled concrete. The results of this study are as follows; Quality of recycled fine aggregate by drying manufacturing system is improved, and compressive and tensile strength of recycled concrete using high quality recycled fine aggregate are similar to those of normal concrete. But, durability such as carbonation, salt damage and dry shrinkage show decreased somewhat.

  • PDF

인조석 품질 개선과 안전을 위한 제조 공정 조정 (D업체의 생산 현장을 중심으로)

  • 박주식;김길동;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.217-224
    • /
    • 2000
  • 건축물의 인조석 외장재를 생산하고 업체의 품질분석을 하기 위한 연구과제이다. 인조석은 자연석과 동일한 구성성분으로 거의 완벽한 자연석 그대로의 자연스러운 질감과 아름다움이 함께 하며 다양한 종류의 패턴과 세련된 색상 그리고 품위 있는 질감으로 최상급 건축마감재로 선택되어지고 있다. 하지만, 고유기술 및 관리기술의 미흡으로 제작과정 자체가 원시적이며, 제품의 신뢰성 자체를 객관적으로 보증 받을 수 있는 기준이 마련되어 있지 않다. 그리고 본사에서 생산하고 있는 외장재용 인조석은 KS규격도 전혀 이루어져 있지 않을 뿐만 아니라, 자체 시험 자료가 전혀 이루어져 있지 않는 관계로 새로운 로트를 장착했을 때 골재, 안료 및 혼화재 간의 배합비를 어떻게 구성하여야 할 것인가를 순수 기술자의 know-how에만 의존해야 하는 실정이다.

  • PDF

The Investigation of Application of Reject Ash and Recycled Fine Aggregate to High Flowing CLSM (고유동 CLSM를 위한 Reject Ash 및 순환 잔골재의 활용성 검토)

  • Song, Yong-Won;Yoon, Seob;Kim, Jung-Bin;Jeong, Yong;Park, Chan-Kyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.403-404
    • /
    • 2009
  • This study has investigated application of the industrial by-product of reject ash and recycled fine aggregate to consider the economical issue to high flowing CLSM(controled low-strength material). But this high flowing CLSM is required more binder, so it has been estimated the influence of reject ash content, use of recycled fine aggregate and crushed sand, and air content about properties of CLSM.

  • PDF

Evaluation of Usability for Sub-base of Muddy Stone produced on Site (현장발생 이암계 퇴적암의 보조기층 적용성 평가)

  • Kim, Jin-Cheol
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.93-100
    • /
    • 2005
  • Rock produced in situ has been used as the road construction materials in consideration of economies. However, because sedimentary rock is rapidly weathered, it is hard to decide appropriateness of quality specifications. This study aims at evaluation of usability for sub-base of muddy stone produced in situ. Test results show that the abrasion ratio is fitted for specifications, but weight loss in 37.5$\sim$16mm after Los Angeles abrasion test shows 47% in muddy stone in comparison with 20$\sim$30% in gneiss and sandstone. The soundness of aggregate shows higher value in muddy stone than in gneiss and sandstone. The weight loss from accelerated weathering test due to freezing and drying show 58% in muddy stone in comparison with 308$\sim$21% gneiss and sandstone.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

A Study for Recycling CO2 Silicate Bonded Waste Foundry Sand as Fine Aggregate for Concrete (CO2형 폐주물사를 콘크리트용 잔골재로 재활용하기 위한 연구)

  • 문한영;최연왕;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.420-429
    • /
    • 2002
  • The amount of $CO_2$-silicate bonded waste foundry sand(WFS) occurred in Korea is over 800,000 ton per year. WFS, as a by-product, is generated through manufacturing process of foundry may affect our environmental contamination, The reason is that WFS has been buried itself not less than 90% out of total WFS. So, it can give damage on the ground of contamination in soil and underwater. Therefore, it is necessary to establish the method recycling WFS because of being intensified waste management law. In this study, we performed the research with respect to harmful component analysis, the qualities of WFS mortar and concrete mixed with WFS. As the results the specific gravity of WFS is the same as that of natural aggregate while unit weight and percentage of solids of WFS are smaller than those of it. But it is found that WFS can be used by substituting WFS for natural aggregate after control of poor grade of WFS. The flowability of mortar and concrete with WFS is inferior to those of natural aggregate, and the setting time of concrete with WFS is faster than that with only natural aggregate, On the contrary, the bleeding of concrete with WFS is shown good result, and compressive and tensile strength of concrete substituted WFS for 30% are higher than those with only natural aggregate regardless of elapsed time.

Engineering Properties of Concrete using of Coal Gasification Slag as the Fine Aggregates (석탄가스화 용융슬래그를 잔골재로 치환한 콘크리트의 공학적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.194-201
    • /
    • 2019
  • This study analyzed the properties of concrete depending on the coal gasification slag(CGS) contents in order to examine the applicability of CGS as the fine aggregate for concrete. Experimental results, trended that the slump and slump flow increased with increasing CGS contents, and air contents has decreased. Evaluation index for segregation of normal strength concrete(EISN) is showed was good from CGS 25% when using crushed sand A(CSa) and CGS 50% when using mixed sand(MS). The compressive strength decreased with increasing CGS contents when CSa was used. However, when MS was used, the maximum value was CGS 50% due to parabolic tendency. Depending on fine aggregates type, compared with compressive strength of CSa was about 8% higher than that of MS, and depending on the use or unuse of CGS, more advantageous at higher strength than low strength. As a result of relative performance study on the quality of concrete according to the CGS contents, it is considered that CGS can be positively contributed to enhancement of workability and strength development when mixed with fine aggregate around 25~50%.

A Study on the Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Percentage that aggregate of materials that concrete composed about $70{\sim}80%$ of whole volume, therefore influence that quality of aggregate gets in concrete characteristics are very important. Schmidt hammer and ultra-sonic velocity method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by present equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameters were concrete age, curing condition, and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

Effect of Anti-washout Admixture Implementation on Backfill Aggregates on Underwater Structures (수중 구조물 골재 속채움 시 수중 불분리성 혼화제의 적용 효과)

  • Kim, Ukgie;Choi, Changho;Park, Bonggeun;Li, Zhuang;Cho, Samdeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.59-67
    • /
    • 2014
  • With increasing underwater structure construction, there is high interest in offshore foundation and underwater grout and various study has been done in this area. For grout materials constructed underwater, it may be washed away by water or easily disturbed and material separation phenomenon during curing period always happens. As a result, it is difficult to ensure construction quality and this has a significant influence on the design strength of structure. In this study, to understand application effects of anti-washout admixture for the preplaced construction method, where grout is injected in monopile after filled with aggregates, laboratory tests on bleeding and compressive strength of anti-washout admixture were performed under various test conditions varying size of aggregate, water and cement ratio and admixture, and test results were compared and evaluated.

An optimal mix design of sound absorbing block on concrete ballast in urban train tunnel (도시철도 터널내 콘크리트 도상용 흡음블럭의 최적 배합설계)

  • Lee, Hong-Joo;Oh, Soon-Taek;Lee, Dong-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.75-82
    • /
    • 2016
  • As spreading of train concrete ballast leads to the increase resounding friction noise, an porous sound absorbing block is applied in urban train tunnel as a counterparts against the friction noise. Three steps of major variables tests for an optimal mix design of the block are conducted to pursue the light weight of the block. Pilot property tests of the block for the cases of the fly-ash only as lightweight aggregates are carried satisfying KRT(Korean Rail Transit) and new KRS(Korean Railway Standards). Based on the results of pilot tests, required structural strength and admixture effects are evaluated. Additionally, typical lightweight aggregates are replaced so that lightweight and strength are improved for serviceability of poor working conditions and proper maintenance in urban train tunnel.