• Title/Summary/Keyword: 골재의 입도

Search Result 241, Processing Time 0.023 seconds

An Experimental Study on Thermal Property of Porous Concrete Containing Bottom Ash (바텀애시를 활용하는 다공성 콘크리트의 열전도 특성에 관한 실험 연구)

  • Jeong, Seung-Tae;Kim, Bum-Soo;Park, Ji-Hun;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • In this paper, the applicability of bottom ash to insulation concrete was investigated to increase the utilization of bottom ash. Bottom ash was used as the aggregates in porous concrete and extensive experiments were conducted to investigate the characteristics of porous concrete using two types of bottom ash aggregates. The water-binder ratios of 0.25 and 0.35 were chosen and concrete specimens was produced with the compaction of 0.5, 1.5, and 3.0MPa to analyze the material properties at different compaction conditions. After concrete specimens were cured for 28 days at water tanks, unit weight, total void ratio, and thermal conductivity were measured. Based on the measured experimental results, the relationships between the unit weight, total void ratio, and thermal conductivity of porous concrete containing bottom ash was presented.

Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation (열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum;Oh, Seung-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • Asphalt pavement accounts for more than 90% of the total pavement in Korea. Pavement is most widely constructed among construction structures. The heat transfer characteristics (Thermophysical Properties) of the asphalt pavement cause the heat island effect in downtown areas. An increasing asphalt surface temperature is one of the major causes of damage to asphalt pavement. This study examined the heat transfer characteristic factors according to solar energy accumulation in an asphalt mixture. The specimens (WC-2 & PA-13, Recycled aggregate used WC-2) used in the experiment were compacted with a Gyratory Compactor. The thermo-physical properties (thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity) and solar energy accumulation were evaluated. The thermal accumulation and HFM tests revealed a 1.2- to 2.0-fold difference. This indicates that the thermal conductivity of the asphalt mixture pavement changes with the accumulation of solar energy. An analysis of the correlation of thermal conductivity according to the surface temperature of the asphalt mixture showed that WC-2 was logarithmic, and PA-13 was linear. Experiments on the heat transfer characteristics of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Performance Evaluation of Artificial Lightweight Aggregate Mortar Manufactured with Waste Glass (폐유리로 제조된 인공경량골재를 이용한 모르타르의 물리적 성능에 대한 평가)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Nam, Ba-Reum;Park, Kwang-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • The compressive strength test, bulk density and mortar absorption ratio were carried out to utilize the data as the basic sources for the lightweight mortar and the lightweight concrete, through the study on the physical characteristics of the artificial lightweight aggregate (ALA) made of waste glasses, which was developed for the first time in the country. On the basis of these experiments, the density and the unit volume weight of the ALA showed the value less than 50% of the common aggregate due to the independent pore structure, and the mortar that contains ALA had no big difference from the Control mortar in the test of the absorption ratio. It is judged that this happens based on the internal independent pore structure of the ALA. In case of the mortar containing ALA, there was a tendency of declination in the compressive strength and the bending strength as the mixing rate is increasing, but all mortar showed more than 70% of the Control mortar compressive strength except for the La50 mortar. Hereafter, it is judged that according to the control of the mixing ratio of mineral admixing agent, water and cement, it will realize the equal strength to the control mortar, and the long term edurance is needed to be considered together.

Fundamental Characteristics of Concrete for Nuclear Power Plant Using Crushed Sand (부순모래 사용에 따른 원전 구조물용 콘크리트의 기초적 특성)

  • Park, Sung-Hak;Kim, Kyung-Hwan;Choi, Byung-Keol;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.168-176
    • /
    • 2017
  • This study, as a research for using crushed sand as a fine aggregate of concrete for nuclear structures, we improved the performance of impact crusher in the existing crushed sand production process and adjusted grain size to conform to ASTM C 33 The shape and grain size characteristics of a crushed sand were examined and concrete was prepared according to the substitution ratio of the sand to investigate the properties of fresh concrete and hardened concrete. The experimental results show that most of the concrete characteristics are equivalent to those of concrete using only heavy sand. However, when the substitution rate of steel sand exceeds 50%, the amount of air, compressive strength and tensile strength are somewhat reduced.

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

Planting-Ability Properties of Porous Concrete as Gradation and Void Ratio (포러스콘크리트의 골재입도 및 공극률에 따른 식생능력평가)

  • 윤덕열;김정환;조영수;표구영;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.243-248
    • /
    • 2002
  • As a notion of environment protection changes throughout the world, construction engineers, as part of the effort to resolve environmental problems, have been actively doing research on environmental friendly porous concrete using large and non-uniform aggregate. Porous Concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze planting ability when the change of aggregate gradation and void ratio. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the void ratio gets smaller The planting ability of porous concrete is decided by the germination and the grass length of Indigofera pseudo-tinctoria(IPT). The length of IPT is longer when the gradation of aggregate is greater and the void ratio gets smaller.

  • PDF

물-시멘트비에 따른 굳은 재생콘크리트의 특성

  • 구봉근;김태봉;신재인;박재성;김정회
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.321-326
    • /
    • 1998
  • 폐콘크리트양은 건설폐기물 발생량의 약 50%정도인 연간 약 500만톤 이상으로 추정하고 있다. 따라서, 건설폐기물인 폐콘크리트에 대한 적절한 기술적 처리와 재활용 시스템이 구축된다면 도로포장 및 기타 포장 하층노반재료, 재생 입도조정쇄석, 건축물의 기초재, 토목 구조물의 기초재, 공작물의 되메우기 재료 등으로 활용될 수 있어 폐기되어버릴 단순한 쓰레기가 아니라 오히려 재활용 용도를 적극 개발하여야 할 중요한 자원이라고 볼 수 있다. 본 연구의 목적은 여러가지 건설 폐기물 중에서도 재활용 가능성이 높으며 구조물 해체시 다량으로 얻어지는 폐콘크리트를 대상으로 건설공사에 재이용하기 위해 폐콘크리트 골재를 사용한 재생콘크리트의 공학적 특성을 실험을 통해 검토하고자 하는 것이다. (중략)

  • PDF

Unsteady Modeling for River Bank Infiltration Flow (하천 제방 침투 흐름의 비정상 모델링)

  • Lee, Nam-Joo;Kim, Hyelim;Yu, Kwonkyu;Yang, Moonyong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.465-466
    • /
    • 2011
  • 이 연구는 일본식 배수공이 설치된 제방의 침투 흐름을 비정상 상태로 SEEP/W 모형을 사용하여 해석하고 모형의 적용성을 평가하기 위해 수행하였다. 수치모형의 적용성 평가를 위해 비정상 상태로 제방 침투에 대한 수리모형실험을 수행하였다. 제체 재료는 경상북도 구미시에 위치한 해평천의 제방 건설 현장의 재료를 사용하였고 일본식배수공은 굵은 골재와 부직포를 사용하여 실험실에 제방 축소 모형을 수조 내부에 제작하였다. 모형제방은 제방축조 방법과 유사하게 다짐을 하기 위해 흙을 쌓으면서 0.20 m 높이마다 다짐을 실시하였다. 다짐방법은 고무망치를 이용한 층다짐을 하였다. 제방 제외지에 0.55 cm/min의 속도로 수위를 증가하여 15분 간격으로 각 0.3 m, 0.4 m, 0.5 m 수위에 따른 비정상 상태의 위압계 측정을 수행하였다. SEEP/W 모형의 매개변수는 투수계수와 입도분포도, 불포화 함수특성곡선(값을 산정하기 어려움)이 있으며, 각 매개변수에 대한 민감도 분석을 수행하였다. SEEP/W 모형의 모의 결과는 수리모형실험 결과와 비교적 잘 일치함을 알 수 있었다.

  • PDF

An Experimental Study on the Properties of Concrete by Grain Shape of Coarse Aggregate (굵은골재의 입도에 따른 콘크리트의 특성에 관한 실험적 연구)

  • Bae, Bok-Keun;Jung, Jae-Sun;Kim, Hyung-Jin;Hong, Ki-Bo;Kim, Won-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.439-442
    • /
    • 2005
  • This study is to consider the influence strength of concrete according to the kinds of coarse aggregate. The experimental study conditions are varied with different maximum size of coarse aggregate(13mm, 19mm, 25mm) and the weight of water and S/a are constant. The compressive strength properties of the concrete at 7 days, 28 days are examined. According to the experimental results, the compressive strength increased and air content, slump decreased with maximum size of coarse aggregate increased.

  • PDF

Influence of Theoretical Void Ratio, Grading of Aggregate and Curing Method on Strength and Water Permeability of Porous Concrete (이론공극율, 골재입도 및 양생방법이 포러스콘크리트의 강도 및 투수성능에 미치는 영향)

  • 김재환;유범재;최세진;백용관;박정호;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.373-378
    • /
    • 2000
  • The objective of this study was to investigate the influence the influence of theoretical void ratio(T.V.R), grading of aggregate and curing method on the strength and water permeability of porous concrete, and the reduction proportion of water permeability by these factors. The results of the study showed that its strength and water permeability were greatly depended on the T.V.R and grading of aggregate, but didn't on the curing method. And, when the T.V.R and grading of aggregate were increased, the reduction proportion of water permeability was small. As the relation ship between its physical properties and non-destruction test values was very high, its use for the estimation of the physical properties will be useful.

  • PDF