• Title/Summary/Keyword: 곤충 비행원리

Search Result 7, Processing Time 0.019 seconds

생체모방 비행

  • Park, Hun-Cheol
    • Journal of the KSME
    • /
    • v.52 no.4
    • /
    • pp.39-43
    • /
    • 2012
  • 이 글에서는 새와 곤충의 비행원리를 비교하고, 이들을 모방한 날갯짓 초소형 비행체의 등장 배경과 현재까지의 연구 동향을 살펴 보고, 향후 연구 방향에 대하여 소개한다.

  • PDF

Design of a Mechanism for Reproducing Hovering Flight of Insects (곤충의 호버링 비행을 구현하는 메카니즘의 설계)

  • 정세용;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

Evaluation of an insect-mimicking flapping device actuated by a piezoceramic actuator (곤충 비행원리를 모사한 압전 작동기 구동형 날갯짓 기구의)

  • 박훈철;변도영;구남서;모하메드 샤이푸딘
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • This paper presents experimental evaluation of an insect-mimicking flapping-wing device actuated by a unimorph piezoceramic actuator. Length of each rod and hinge point in the linkage/amplification system are carefully chosen such that the resulting wing motion can mimic clapping of wings in a real insect at the end of upstroke. In addition to this, a pair of corrugated wings are fabricated mimicking zig-zag cross section of a real insect wing. Thanks to the two additional implementation, the improved flapping wing device can generate a larger lift force than the previous model even though area of the new wing is about 50% less than that of the previous wing. In this work, effects of the wing clapping, the wing corrugation, and the input wave form on the lift force generation have been also experimentally investigated. Finally, the vortex generated by the flapping device has been captured by a high speed camera, showing that vortices are produced during up- and down-strokes.

Experimental Study on Flapping of a Coleoptera (딱정벌레목 곤충의 날갯짓에 대한 실험적 연구)

  • Yoo, Yong-Hoon;Jang, Doo-Hwan;Park, Hoon-Cheol;Byun, Yong-Hwan;Byun, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • A flow visualization is conducted to investigate a flight characteristics of a Coleoptera and an effect of flapping elytra was considered in this study. Also the movements of outer wing(elytra) and inner wing is analyzed using High Speed Camera. As a result of this experiment, in case of flapping insect, three mechanisms to generate lift is confirmed. A small movement of outer wing(elytra) is confirmed and the effect of outer wing(elytra) is estimated.

Ship's Propulsion Using the Principle of Hovering Flight of a Small Insect (작은 곤충의 정지비행 원리를 이용한 배의 추진)

  • Ro, Ki-Deok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.383-387
    • /
    • 2001
  • A mechanism of hovering flight of small insects which is called the Weis-Fogh mechanism is applied to ship propulsion. A model of the propulsion mechanism is based on a two-dimensional model of the Weis-Fogh mechanism and consists of one or two wings in a square channel. A model ship equipped with this propulsion mechanism was made, and working tests were performed in a sea. The model ship sailed very smoothly and the moving speed of the wing was small compared with the advancing speed of the ship.

  • PDF

Kinematic Optimization and Experiment on Power Train for Flapping Wing Micro Air Vehicle (날갯짓 초소형 비행체의 끈을 이용한 동력 전달 장치에 대한 기구학적 최적화 및 실험)

  • Gong, Du-Hyun;Shin, Sang-Joon;Kim, Sang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.289-296
    • /
    • 2017
  • In this paper, geometrical optimization for newly designed flapping mechanism for insect-like micro air vehicle is presented. The mechanism uses strings to convert rotation of motor to reciprocating wing motion to reduce the total weight and inertial force. The governing algorithm of movement of the mechanism is established considering the characteristic of string that only tensile force can be acted by string, to optimize the kinematics. Modified pattern search method which is complemented to avoid converging into local optimum is adopted to the geometrical optimization of the mechanism. Then, prototype of the optimized geometry is produced and experimented to check the feasibility of the mechanism and the optimization method. The results from optimization and experiment shows good agreement in flapping amplitude and other wing kinematics. Further research will be conducted on dynamic analysis of the mechanism and detailed specification of the prototype.