• Title/Summary/Keyword: 곤충의세계

Search Result 32, Processing Time 0.016 seconds

Distributional Characteristics and Population Substantiality of Viola mirabilis L.; Rear edge Population in Korea (한국이 후방가장자리 개체군인 넓은잎제비꽃(Viola mirabilis L.)의 분포특성과 지속가능성)

  • Chae, Hyun-Hee;Kim, Young-Chul;An, Won-Gyeong;Kwak, Myoung-Hai;Nam, Gi-Heum;Lee, Kyu-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.422-439
    • /
    • 2019
  • The rear edge population is considered to have low genetic diversity and high risk of extinction according to a highly isolated distribution. However, the rear edge population is observed to have persisted for an extended period despite the low genetic diversity. As such, it is necessary to understand the ecological process involved in the persistence of the population. Viola mirabilis L. in Korea is considered the rear edge population from the perspective of the worldwide distribution. We surveyed the distribution range of V. mirabilis, which shows the isolated distribution in the central area of Korea, to find out the factors of its persistence. Next, we investigated and accessed the vegetational pattern of habitats, soil environment, phenology, self-compatibility, population structure, and extinction risk factors observed in the distribution area. V. mirabilis was distributed in the understory of the deciduous forest, planted forest of the deciduous conifer and deciduous broad-leaved trees, shrubland, and grassland in the limestone area. We also observed the re-establishment of seedlings in the population, and most of them showed a stable population structure. For chasmogamous flowers, the visit by pollinators has a significantly positive relationship with the production of fruits. However, we found that the production of the cleistogamous flowers was more numerous in all studied populations and that only the cleistogamous flowers were produced despite a more substantial plant size in some populations. The plant size was more related to the production of the cleistogamous flowers than that of the chasmogamous flowers. Accordingly, the cleistogamous flowers significantly contributed to seedling recruitment in the population. We found that the production of the chasmogamous flowers and the cleistogamous flowers did not have a correlation with the factors of the soil analysis except for phosphoric acid. V. mirabilis showed the self-incompatibility characteristics most likely due to the production capability of the cleistogamous flowers. Potential extinction risk factors observed in the distribution area was included the development of limestone mine, the expansion of agricultural fields, and the construction of houses. Although V. mirabilis showed an isolated distribution in the limestone area in the Korean peninsula, it showed a diverse distribution in a wide habitat environment ranging from the grassland to the understory of the trees with relatively low canopy closure rate. Moreover, we concluded that the persistence of the population was possible if we can maintain the current state of multiple populations and stable population structure.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.