• Title/Summary/Keyword: 곡선터널라이닝

Search Result 18, Processing Time 0.019 seconds

Dynamic Behaviors of the Curved Steel Tunnel Lining due to Wind Loads by Passing Vehicles (통과차량으로 인한 풍하중에 대한 곡선 강재 터널라이닝의 동적 거동 분석)

  • Mha, Ho-Seong;Cho, Kwang-Il;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.309-320
    • /
    • 2012
  • Dynamic behaviors of the tunnel linings of curved tunnels with various curvatures are investigated to examine the effect of wind loads due to passing vehicles. In the case without backfill, the responses of the tunnel lining should be considered to examine the clearance of the lining. A steel tunnel lining is selected to see the influence of the wind load upon the tunnel lining more clearly. The wind pressure upon the lining is simplified into the pressure and suction while the vehicle passing the loading positions. As the radius of curvature decreases, the response decreases, showing that the strength against the deformation is found to increase since the asymmetry of the deformation shape is reduced. It is found that the responses increase as the passing vehicle speed increases.

Evaluation of fire-proofing performance of reinforced concrete tunnel lining coated by newly developed material (신개발 내화재료에 피복된 철근콘크리트 터널라이닝의 내화성능평가)

  • Park, Hae-Genn;Kim, Jang-Ho Jay
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Efficient traffic network is required in urban area for good living condition. However, dense traffic network creates traffic jam and gives bad influences to the ground environment. Therefore, advanced use of underground and tunnel is required. But, in the last 20 years many tunnel fire accidents have occurred all over the world. Increase of tunnels and increase of traffics result in increase of tunnel fire. Tunnel fire creates damage to people and to the tunnel structure. Also, tunnel fire creates a big economical loss. In a mountain tunnel, the stability of the tunnel will not be disturbed by fire although the tunnel lining will get a severe damage. However, in a shield tunnel or immersed tube tunnel, cut and cover tunnel, there is a high possibility that tunnel itself will collapse by fire because their tunnel concrete lining is designed as a structural member. The aim of this experimental research is to verify the fire protection performance of newly developed cementitious material compared with the broadly used existing products in Europe and Japan. For the experiments, the general NATM tunnel concrete linings with the newly developed material were tested using fire loading curve of RABT (Maximum peak temperature is $1,200^{\circ}C$) and RWS (Maximum peak temperature is $1,350^{\circ}C$). From the test results, the newly developed fire protection material applied with 30 mm thickness showed good fire-proofing performance under RABT fire loading.

  • PDF

Study on improving method of arranging trapezoidal pre-cast segment lining in shield tunnel (쉴드터널의 사다리꼴 세그먼트라이닝 배열방법 개선에 대한 연구)

  • Kim, Jung-Hyun;Kang, Kyung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • This study is about an arrangement method of trapezoidal pre-cast segment lining that can be applied in shield tunnel construction. Trapezoidal segment lining is formed by assembling tapered pre-cast concrete segments taking advantage of the tapered shape of pre-cast segments upon delivery on site. By calculating tapering of the segments manufactured in single type and rotating the segments when putting them together, a variety of tunnel alignments can be arranged in the most efficient way. Once the design criteria and tunnel alignment (straight or curved) is analyzed, the sequence of assembling trapezoidal segments in compliance with tunnel alignment will be computed. On site an operator can utilize the softwareto automatically determine sequential arrangement of trapezoidal segments. When the actual arrangement of segmental lining is different from the computed output, the operator can input the actually measured values to coincide the computerized calculation with the real status of assembly. Then the adjustment will be the basis of subsequent arrangement of segments, thus the continuity of work can be guaranteed.

  • PDF

An Experimental Study on the Fire Damage Evaluation of the Concrete Lining (콘크리트 라이닝의 화재손상 평가에 관한 실험적 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Yoo, Yong-Ho;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.201-206
    • /
    • 2011
  • 최근 국내에서는 대심도 터널 시공계획이 발표되면서 터널 구조물에 대한 방재 및 내화설계에 대한 관심이 높아지고 있다. 화재 발생 시 문제가 발생할 수 있는 콘크리트 라이닝의 내화설계를 위해서는 보다 구체적인 내화성능을 측정하기 위한 내화실험이 실시되어야 한다. 현재 국내에서는 건축물의 내화성능을 평가하기 위한 시험평가 방법이 제시되어 있는 상태이나 터널 구조물에 대한 시험법이나 성능평가는 거의 전무한 상황이다. 따라서 본 연구에서는 콘크리트 구조물의 화재손상 정도를 평가하기 위해 현장에서 사용되고 있는 터널 라이닝을 대상으로 화재 시 콘크리트 라이닝의 손상정도를 평가하였다. 실험은 대표적인 터널 화재시나리오 곡선인 RABT 화재 시나리오를 적용하였으며 폭렬방지에 효과적인 것으로 알려져있는 fiber cocktail(강섬유+폴리프로필렌섬유)의 혼입여부에 따른 성능평가도 함께 실시하였다.

  • PDF

Evaluation of pore water pressure on the lining during tunnel operation (운영 중 터널에 작용하는 간극수압 평가기법)

  • Shin, Jong-Ho;Shin, Yong-Suk;Choi, Kyu-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most of tunnel is located in the ground. In case of leakage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, the pore water pressure can be developed on the lining due to the deterioration of the drainage system. The increased pore water pressure on the lining is termed here as 'residual pore water pressure'. Residual pore water pressure can be measured by piezometer, but it is generally not allowed because of damages of drainage system. Therefore, an indirect and nondestructive method is required for evaluating the residual pore water pressure. Moreover, understanding of pore water pressure is needed during healthy operation of the lining. In this study, a new method for evaluation of pore water pressure on the lining during operation is proposed using theoretical and numerical analysis. It is shown that the method is particularly useful for stability investigation of pore water pressure on the lining during operation using theoretical analysis with normalized pore water pressure curve.

  • PDF

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel (쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능)

  • Han, Byung-Chan;Harada, kazunori;Kwon, Young-Jin;Kim, Yun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.95-105
    • /
    • 2014
  • Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.

Elastic stability analysis of curved steel rib using differential quadrature method (DQM) (미분 구적법 (DQM)을 이용한 곡선 강지보의 안정성 해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 2004
  • The differential quadrature method (DQM) for a system of coupled differential equations governing the elastic stability of thin-walled curved members is presented, and is applied to computation of the eigenvalues of out-of-plane buckling of curved beams subjected to uniformly distributed radial loads including a warping contribution. Critical loads with warping, which were found to be significant, are calculated for a single-span wide-flange beam with various end conditions, opening angles, and stiffness parameters. The results are compared with the exact methods available. New results are given for the case of both ends clamped and clamped-simply supported ends without comparison since no data are available The differential quadrature method gives good accuracy and stability compared with previous theoretical results.

  • PDF