• Title/Summary/Keyword: 곡면콘크리트

Search Result 14, Processing Time 0.024 seconds

Technology Proposal for Curved Concrete Tracks Construction of 2018 Winter Olympic Sliding Center in Pyeongchang (평창 동계올림픽 슬라이딩센터의 곡면콘크리트 트랙 시공을 위한 기술제안)

  • Park, Young-Mi;Kim, Hye-Won;Park, Ki-Hong;Jo, Seong-Joon;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.69-70
    • /
    • 2014
  • For the curved concrete track construction of 2018 winter Olympic sliding center in Pyeongchang, in this study proposed the digital fabrication technology using CNC. This method can control the 3D geometries of the curved concrete structure based on the digital design. Conventional method generates the construction errors because this method fabricates many temporary zig bar using 1:1 full size drawing for install frozen pipes and sets up each zig bars at the construction site. Propose method is effective to ensure the precise fabrication and construction of zig bars. Also this method can eliminate errors of the frozen pipes position and curved concrete construction.

  • PDF

Effect of Freezing and Thawing on Adhesion of Cement Concrete with Coarse-sand Coated FRP (규사코팅 FRP와 콘크리트 부착특성에 동결융해가 미치는 영향)

  • Lee, Gyu Phil;Park, Kwang Phil;Hwang, Jae Hong;Kim, Dong Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • As fiber reinforced polymer (FRP) material is appled for a curved structure such as tunnel, FRP material must has a curved shape. Until now, the curved FRP material has been producted by hand-lay-up or filament winding work. It is impossible for mass production of the curved FRP material by these methods. Also, the quality of product by these methods is lower than that by pultrusion method. New pultrusion method and equipment had been developed for production of FRP material with steady curvature. The objective of this study is to evaluate the effect of freezing and thawing on adhesion of cement concrete with coarse-sand coated FRP in repair and reinforcement of cement-concrete structure using curved FRP material.

An Experimental Study on the Behavior of Small Scale Curved Panel Using Composite Materials (복합소재를 활용한 곡면 패널 축소형 실험체의 구조 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • FRP is a new material that is light, has high strength and high durability, and is emerging as a third construction material inside and outside of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. Because a small composite panel specimen is smaller than a full-size specimen, it can be used in a variety of experiments under different conditions. Therefore, in this study, experiments were performed on a void section, a solid section, a connected solid section, and a sand-coating solid section. The results of the experiment show that the connection of composite curved panels with longitudinal connections provides almost equivalent performance to that of a single panel. However, it is necessary to strengthen the connections, since the connections that are most susceptible to damage will break first.

A numerical study on feasibility of the circled fiber reinforced polymer (FRP) panel for a tunnel lining structure (터널 라이닝 구조체로서 곡면 섬유강화 복합재료의 적용성 검토를 위한 수치해석적 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.451-461
    • /
    • 2010
  • Utilization of the fiber reinforced polymer (FRP) material has been enlarged as a substitution material to the general construction materials having certain long-term problems such as corrosion, etc. However, it could be difficult to apply the FRP material, which has a linear shape generally, to an arch-shaped tunnel structure. Therefore, an attempt has been made in this study to develop a device to form a designed cross section of FRP material by pulling out with a curvature. A sample of the circled FRP product was successfully produced and then the sample has been tested to identify its physical characteristics. Then, intensive feasibility studies on the circled FRP panel to be used for a tunnel lining structure have been carried out by numerical analyses. As a result, it appears that the new circled FRP-concrete composite panel has a high capability to be used for a tunnel lining material without any structural problem.

Study on mechanical behavioral characteristics of the curved FRP-concrete composite member for utilization as a tunnel lining structure (터널 라이닝 구조체로서 활용을 위한 곡면 FRP-콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Utilization of the fiber reinforced polymer (FRP) material has been increased as an alternative in a bid to supplement the problems with general construction materials such as long-term problems corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel lining structure which has arch-shape in general. In this study, the loading tests for the FRP-concrete composite member was carried out to evaluate their applicability as a tunnel reinforcement material, which are based on the results from preliminary numerical studies for identifying the behavioral characteristics of FRP-concrete composite member. Moreover, numerical analysis under the same condition as applied in the loading tests was again conducted for analysis of mechanical behavior of the composite member. As a result of the load test and numerical analysis, it appears that the FRP-concrete composite member is greatly subject to shear movement caused by bending tension acting on the interface between two constituent members.

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Stability Analysis of Concrete Plugs Using a 3-D Failure Criterion (3차원 파괴조건식을 이용한 콘크리트 플러그의 안전도 평가)

  • Lee, Youn-Kyou;Song, Won-Kyoung;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.526-535
    • /
    • 2011
  • A new failure criterion for concrete, which takes into account the effect of the intermediate principal stress, is proposed. The new criterion, which takes the advantages from both the Mohr-Coulomb and the Willam-Warnke criteria, is linear in the meridian section, while its octahedral section is always smooth and convex. Fitting the triaxial compression data with the proposed criterion shows the high performance of the new criterion. A new formula for the factor of safety of concrete is defined based on the new failure criterion and it is employed in the stability analysis of the concrete plugs installed in the pilot plant. The new formula for the factor of safety measures the degree of closeness of a stress state to the failure surface in the octahedral plane. Finally, 3-D finite element analyses of pilot plant were carried out to obtain the stress distributions in the plugs. Then, the stress distributions are converted to those of factor of safety by use of the proposed formula. Based on the distribution of factor of safety in the concrete plugs, the stability of the tapered and wedge-shaped plugs is evaluated.

Numerical Study on Columns Subjected to Blast Load Considering Compressive Behavior of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 압축거동 특성을 반영한 기둥의 내폭해석 )

  • Jae-Min Kim;Sang-Hoon Lee;Jae Hyun Kim;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.105-112
    • /
    • 2023
  • Steel fiber reinforced concrete (SFRC) exhibits enhanced strength and superior energy dissipation capacity compared to normal concrete, and it can also reduce crack propagation and fragmentation of concrete even when subjected to blast loads. In this study, the parameters defining failure surface and damage function of the K&C concrete nonlinear model were proposed to be applied for the properties of SFRC in LS-DYNA. Single element analysis has been conducted to validate the proposed parameters in the K&C model, which provided very close simulations on the compressive behavior of SFRC. In addition, blast analysis was performed on SFRC columns with different volume fractions of steel fibers, and the blast resistance of SFRC columns was quantitatively analyzed with Korea Occupational Safety & Health Agency (KOSHA) guidelines.

Mathematical Algorithms for the Automatic Generation of Production Data of Free-Form Concrete Panels (비정형 콘크리트 패널의 생산데이터 자동생성을 위한 수학적 알고리즘)

  • Kim, Doyeong;Kim, Sunkuk;Son, Seunghyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.565-575
    • /
    • 2022
  • Thanks to the latest developments in digital architectural technologies, free-form designs that maximize the creativity of architects have rapidly increased. However, there are a lot of difficulties in forming various free-form curved surfaces. In panelizing to produce free forms, the methods of mesh, developable surface, tessellation and subdivision are applied. The process of applying such panelizing methods when producing free-form panels is complex, time-consuming and requires a vast amount of manpower when extracting production data. Therefore, algorithms are needed to quickly and systematically extract production data that are needed for panel production after a free-form building is designed. In this respect, the purpose of this study is to propose mathematical algorithms for the automatic generation of production data of free-form panels in consideration of the building model, performance of production equipment and pattern information. To accomplish this, mathematical algorithms were suggested upon panelizing, and production data for a CNC machine were extracted by mapping as free-form curved surfaces. The study's findings may contribute to improved productivity and reduced cost by realizing the automatic generation of data for production of free-form concrete panels.