• Title/Summary/Keyword: 곡면배열 소나

Search Result 2, Processing Time 0.017 seconds

Beam pattern analysis for beam homogenization of conformal array sonar (곡면 배열 소나의 빔 균일화를 위한 빔 패턴 분석)

  • Jeong-Ung, Choi;Wooyoung, Hong;Jun-Seok, Lim;Keunhwa, Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.637-646
    • /
    • 2022
  • Sub-arrays of arbitrary conformal array have different geometric shape through steering direction, thus the beam patterns of sub-arrays are always non-uniform. In this paper, we apply the beam pattern synthesis method using convex optimization into the conformal array, and shows the improvement of uniformity of beam performance. The simulation is performed with the conformal array of cut-sphere shape. As a result, the standard deviation of 3 dB beamwidth in elevation is greatly reduced but the directivity index is also reduced. To alleviate this trade-off, we propose a convex optimization using a shading function.

Performance analysis of sensor selection methods for beam steering direction of non-linear conformal array (비선형 곡면 배열 센서의 빔 지향 방위별 센서 선택 방법에 대한 성능 분석)

  • Kwon, Taek-ik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.391-399
    • /
    • 2021
  • The conformal array sensor has different sub-array depending on different beam steering directions. According to the method to effective the sensor, the performance of the conformal array sensor can be different, where the sub-array selects an effective sensor. Also, due to the figure of the conformal array sensor, the figure of the sub-array can be different each other, which results in different performance on directivity index, beam width and etc. In this paper, two methods to select sub-array which is the criteria for each sensors position vector and directive vector were proposed. For two sub-array selection methods, the performance of the directivity index, horizontal and vertical beam width were compared with the average and variance. In addition, this comparison was conducted when the number of sensors was fixed. When the number of sensors was not fixed, the directional vector method mainly results in high performance, but the performance of vertical beam width was lower or equal. When the number of sensors was fixed, the performance of two methods is similar, but the performance of variance was deteriorated.