Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.502-502
/
2013
유기태양전지는 간단한 제작 공정과 저비용 제작이 가능하고 플렉서블 소자를 제작할 수 있는 장점을 가지고 있어서 많은 연구자들이 관심을 가지고 있다. 하지만 현재 유기태양전지의 효율은 낮기 때문에 실리콘 기반이나 화합물 기반의 태양전지에 비해서 효율이 낮은 단점을 가지고 있다. 유기태양전지의 효율을 높이기 위한 다양한 연구들이 활발하게 진행되고 있다. 특히 나노구조를 가지는 광활성층을 사용하여 제작된 고효율 유기태양전지에 대한 연구가 이루어지고 있다. 나노구조를 가지는 유기태양전지는 생성된 엑시톤을 분리시킬 수 있는 계면이 넓어지기 때문에 전하 분리 효율을 높아지게 되고, 고효율의 유기태양전지를 제작할 수 있게 된다. 또한, 넓은 광흡수 스펙트럼을 가지는 양자점을 활용하는 연구도 함께 진행되고 있다. 양자점을 사용하여 유기태양전지의 효율을 높이는 실험이 진행되고 있지만, 실제 효율을 높이는데 많은 어려움을 가지고 있다. 본 연구에서는 고분자점과 양자점이 결합한 나노복합체를 사용하여 요철 구조를 가진 광활성층을 사용한 유기태양전지를 제작하였다. 고분자점과 양자점이 결합한 나노복합체는 물질에 비해서 넓은 광흡수 영역을 가져서 생성된 엑시톤의 양을 늘리는 역할을 한다. 고분자점과 양자점이 결합한 나노복합체로 만든 요철 구조는 평면구조로 제작한 요철 구조에 비해서 계면에서 균일한 적층이 가능한 나노구조가 제작되기 때문에, 계면에서 일어나는 전하 손실을 줄일 수 있다. 고분자점과 양자점이 결합한 나노복합체로 제작된 요철 구조를 사용한 유기태양전지가 기본 소자에 비해서 상당한 효율 향상을 확인하였다. 양자점을 포함한 나노복합체로 제작된 유기 태양전지의 효율증진 메커니즘을 논한다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2004.07b
/
pp.1019-1022
/
2004
본 연구에서는 PERC(passivated emitter and rear cell) 구조를 갖는 고효율 단결정 실리콘 태양전지에 도금법을 적용하여 Ni/Cu 전극을 형성하였다. 고효율 태양전지는 제작 비용이 높고 공정이 복잡하기 때문에 실용화에 적용이 어려운 단점이 있다. 따라서 태양전지의 효율은 그대로 유지하고, 공정을 간단하게 줄이면서 저가격화 할 수 있는 방법에 대한 연구가 필요하다. 기존의 고효율 실리콘 태양전지에 가장 일반적으로 적용되고 있는 Ti/Pd/Ag 전극의 경우 고가의 증착 장비를 이용할 뿐만 아니라 재료 자체도 매우 고가의 물질이 사용되고 있다. 도금법으로 Ni/cu 전극을 형성하여 태양전지를 제작한 결과 공정을 간소화하고 비용을 절감 하면서, 20% 이상의 고효율 태양전지를 얻을 수 있었다.
3족과 5족 물질로 구성된 III-V 고효율 화합물 태양전지는 태양광 스펙트럼에 대한 많은 파장영역대의 빛을 흡수할 수 있는 장점을 갖고 있어 지구상에서 만든 태양전지 중 가장 효율이 높다. 그러나, III-V 화합물 물질은 실리콘 보다 고가의 비용이 들므로 이를 극복하기 위해서 집광렌즈 및 빛을 추적하기 위한 추적기 등 집광시스템으로 구성되어야 한다. 본고에서는 고효율의 III-V 화합물 태양전지의 현재 기술개발동향 및 고효율 저가화를 위한 방안으로 기판재활용 기술, 태양광 태양열 복합활용 시스템 및 소형집광모듈 등을 소개하고자 한다.
Proceedings of the Korean Vacuum Society Conference
/
2010.08a
/
pp.325-325
/
2010
최근 결정질 실리콘 태양전지 분야에서는 태양전지의 Voc와 Isc의 증가를 통한 효율 향상을 목적으로 후면 passivation에 대한 연구가 활발하게 진행되고 있다. Local-Back Contact은 최적화된 후면 passivation 박막을 이용한 태양전지 제조방법이다. 고효율 태양전지 개발을 위해 최적의 laser 가공 조건이 확립되어야 한다. 본 연구에서는 고효율의 LBC 태양전지 개발을 위해 ONO 구조의 후면 passivation 박막에 laser ablation 조건을 가변하여 LBC 태양전지를 제작하고 그 특성을 분석하였다. 본 연구에 사용된 laser는 355nm 파장을 갖는 UV laser를 사용하였다. laser 파워는 5W, 주파수는 30kHz로 하였을 때 폭 20um, 깊이 5um의 홀을 형성시킬 수 있었다. 후면 접촉 면적의 영향을 확인하기 위하여 laser ablation 간격을 300um, 500um, 700um으로 가변하여 공정을 진행하였다. 태양전지 제조 결과 spacing 300um일 경우 효율이 높게 측정되었으며, laser ablation의 데미지를 줄이기 위한 FGA 처리시 웨이퍼 표면의 데미지를 줄여 carrier lifetime 향상에 기여하는 것을 확인할 수 있었다. 본 연구의 결과를 이용하여 향후 후면 passivation 극대화 및 접촉면적 가변을 통한 고효율 LBC 태양전지 개발이 가능할 것으로 판단된다.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.307-307
/
2012
현재 태양전지 시장은 결정질 태양전지가 주류를 차지하고 있으며 이중 상대적으로 재료비가 저렴한 다결정 실리콘 기반의 고효율 태양전지 제작에 대한 연구가 활발히 진행되고 있다. 이에 본 실험에서는 표면 텍스처링 방법에 따른 태양전지 소자의 특성 변화에 대한 실험을 진행하였다. 일반적으로 다결정 태양전지의 경우 산성용액을 이용한 표면 텍스처링을 실시하는데 이 경우 표면에 형성된 텍스처 구조는 산성용액의 등방성 식각으로 인해 반구(Hemisphere) 형태의 구조를 띄게 된다. 이는 표면에서의 광흡수율을 떨어뜨려 태양전지 소자의 효율을 저해하는 원인이 된다. 따라서 본 연구에서는 다결정 실리콘 태양전지의 효율 향상을 위해 레이저를 이용한 차세대 텍스처링 방법에 대한 연구를 진행하였다. 우선 355 nm 파장의 Ultra-Violet (UV) 레이저를 소자 표면에 조사함으로써 $10{\mu}m$의 dot diameter와 depth를 갖는 honey comb 배열의 hole을 형성하였다. 이후 산성용액에 담가 레이저 공정 후의 slag를 제거해 최종적으로 피라미드 형태의 구조를 형성하였다. Suns_Voc 효율 측정 결과 산성용액을 이용한 텍스처링의 경우 개방 전압이 611 mV, 곡선인자가 81%, 효율이 17.32%로 각각 측정되었다. 반면, 레이저 텍스처링의 경우에서는 개방전압이 631 mV, 곡선인자가 83%, 효율이 18.33%로 용액 텍스처링 방법보다 우수한 특성을 보였다. 이는 UV 레이저 텍스처링을 통해 형성된 피라미드 형태의 표면 구조에서의 광흡수율이 산성용액을 이용한 방법보다 우수함을 말하며, 따라서 태양전지의 주요 파라미터가 향상된 결과를 보였다. 본 실험에서는 레이저 텍스처링을 통한 태양전지 제작에 대한 방법을 제시하며, 향후 고효율의 다결정 태양전지 제작에 있어 기여 할 것으로 판단된다.
7월호와 9월호에 이어 최근 관심이 고조되고 있는 태양전지에 대해 다루고 있다. 이번호는 마지막 시간으로 주택용 태양전지인 다결정 실리콘 태양전지의 전망에 대해 알아본다. 본 원고에서는 다결정 실리콘 태양전지의 변환효율향상 시도에 대해서 개괄한 후, 최근의 연구개발에서 달성된 고효율화 기술에 관한 성과를 소개한다. 각각의 특징을 비교하고 다결정 실리콘 태양전지의 고효율화 기술을 실용화할 때의 지침에 대해서 언급하겠다. 그리고 기판의 저 코스트화와 원료이용효율의 향상책으로서 이미 실용화레벨이 달하고 있는 슬라이스레스 실리콘기판기술에 대해서 비교검토하고, 이후의 지침에 대해서 언급하겠다. 마지막으로 이후의 초박형 Cast기판 태양전지를 전망하겠다.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.272-272
/
2010
최근 화합물반도체를 이용한 집광형 고효율 태양전지가 차세대 태양전지로서 주목을 받기 시작하였다. GaAs를 주축으로 하는 고신뢰성 고효율 태양전지는 높은 가격으로 인해 응용이 제한되어왔으나, 고집광 기술을 접목하여 태양전지 재료 사용을 수 백배 이상 줄이면서도 동시에 효율을 극도로 향상시킴으로써 차세대 태양전지로 활발히 개발되고 있다. GaAs 기판을 이용한 다중접합의 태양전지는 n-type GaAs 기판 위에 버퍼 층, GaInP back surface field 층, GaAs p-n 접합, AlInP 창층, GaAs p-n 접합의 터널접합층, 상부전지로서 GaInP p-n 접합, AlInP 창층 순서로 epi-taxial structure를 형성하고 전극과 무반사막을 구성한다. 이러한 태양전지의 효율을 결정하는 요인 중, 상부 전극은 전기적 및 광학적 손실을 일으키는 원인으로써 최소화되어야 한다. 그런데 이러한 이중접합 화합물 태양전지에 집광한 태양광을 조사할 경우, 태양광을 집광한 만큼 전류가 증가하게 되며 증가한 전류가 전극에 흐르면서 전기적 효율 손실을 유발하게 된다. 따라서, 집광형 화합물 반도체 태양전지의 전극에 의한 손실에 대한 연구가 선행되어 저항에서 손실되는 전력을 최소화하여야만 전기적 손실이 낮은 고집광 태양전지 개발이 가능하다. 본 논문에서는 먼저 전극 두께가 0.5${\mu}m$인 GaInP/GaAs 이중접합 태양전지 (효율 25.5% : AM1.5G)의 집광시 효율 변화에 대해서 연구하였다. 이후 이러한 효율 변화가 전극 구조의 최적화에 의해서 개선 될 수 있는지를 삼차원 모의실험을 통해서 확인하였다. 모의실험에는 Crosslight 사의 APSYS를 사용하였고, material parameter를 보정하여 실제 실험 결과에 근사 시킨 후 전극 구조에 대한 최적화를 하였다.
최근까지 태양전지 기술 개발 방향은 발전 단가를 낮추는 저가형 태양전지 개발 연구와 변환 효율을 높이는 고효율 태양전지 개발 연구가 진행되어 왔다. 태양전지의 발전단가를 낮추기 위하여 저가로 대량 생산이 가능하도록 다양한 물질과 공정이 개발되었지만, 변환 효율이 낮아 상용화에 큰 걸림돌이 되고 있다. 또한 변환 효율 향상을 위한 연구는 과거에는 변환 효율이 높은 물질을 찾기 위해 다양한 시도가 이루어졌으며, 현재는 물질 합성과 적층 구조 등을 이용하여 광흡수 대역을 넓혀 변환 효율을 높이는 데 주력하고 있다. 최근에는 양자점과 나노 기술을 이용하여 기존의 광전 변환 메커니즘의 비효율성을 개선한 신개념의 MEG 태양전지에 대한 연구 개발이 추진되고 있다.
Proceedings of the Korean Vacuum Society Conference
/
2011.02a
/
pp.382-382
/
2011
보다 저렴한 다결정 실리콘 웨이퍼를 사용한 다결정 실리콘 태양전지의 발전효율개선을 위해서는 태양광스펙트럼의 표면 흡수기구를 최적화하고, 전자-정공쌍의 생성극대화 및 재결합 기구 제어를 통한 전하운바자들의 안정적인 분리와 전극으로의 효율적인 수집이 필수적인다. 현재 양질의 다결정 실리콘 웨이퍼에 기반한 다결정 실리콘 태양전지 양산공정에서 16~17% 발전효율이 이루어지고 있으며 18% 이상의 발전효율을 얻기 위해서는 보다 더 우수한 품질의 다결정 실리콘 웨이퍼가 요구된다. 본 연구에서는 15.5~16.5% 대역의 평균 발전효율을 갖는 15.6 cm${\times}$15.6 cm 크기 고효율 다결정 실리콘 태양전지 전면의 전자발광(EL : electroluminescence)데이터로부터 효율기여도가 높은 위치와 상대적으로 기여도가 낮은 위치들을 선정하여 380~1050nm 파장대역의 광선속에 대해 국부적인 외부양자효율(EQE : external quantum efficiency)을 측정하고 투과전자현미경(TEM : tunneling electron microscope) 등을 활용하여 결정방향 등에 기인하는 양자효율 악화기구를 분석하였다. 결론적으로 15%대의 상대적으로 낮은 발전효율을 보이는 태양전지들은 300~600 nm 단파장 영역에서 양자효율이 상대적으로 낮은 저급한 결정성의 웨이퍼에 기인하고 16.5%이상의 높은 발전효율을 갖는 태양전지들은 단파장영역에서 높은 양자효율을 갖는 영역이 수광면적의 80~90%를 차지하는 것으로 밝혀졌다. 이와 더불어 15%대의 발전효율을 갖는 태양전지에서는 600~1100 nm 파장대역에서 상대적으로 악화된 양자효율을 갖는 저급한 결정성 영역이 30~40%를 차지하였으나 16.5%대역의 고효율 태양전지에서는 저급한 결정성 영역이 5~10%를 차지하여 대조를 보였다. 따라서 18%이상의 높은 발전효율을 갖는 다결정 실리콘 태양전지의 양산을 위해서는 양자효율이 우수한 양품의 웨이퍼를 기반으로 표면 texturing을 통해 평균 태양광 흡수율을 90%이상으로 개선하고, 보다 미세한 프론트 전극패턴을 통해 수광면적을 개선하고 선택적인 에미티공정 기술 등을 적용할 필요가 있음을 제안하고자 한다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2007.11a
/
pp.153-154
/
2007
결정질 실리콘 웨이퍼의 두께와 비저항은 태양전지의 효율을 결정하는 매우 중요한 요인이다. 높은 효율을 갖는 태양전지 설계를 위해 태양전지 시뮬레이터인 PC1D 프로그램을 이용하여 태양전지 웨이퍼 두께, 웨이퍼 비저항, 에미터 도핑 농도를 조절하였다. 최적화 결과, 베이스층 두께 $100{\mu}m$, 비저항 $0.1{\Omega}{\cdot}cm$, 에미터층 도핑 농도 $3{\cdot}10^{18}cm^{-3}$에서 $J_{sc}=39(mA/cm^2),\;V_{oc}=734(mV),\;P_{max}=3.17(W)$, FF=74, Efficiency=21.3%의 고효율을 얻을 수 있다. 본 연구를 통하여 태양전지 설계나 제조 시에 연구비를 절감할 수 있고 높은 효율의 태양전지로 접근할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.