• Title/Summary/Keyword: 고형상비

Search Result 11, Processing Time 0.044 seconds

Isolation Technologies for Single-crystalline Silicon MEMS Structures Using Trench Oxide (트렌치 산화막을 이용한 단결정실리콘 MEMS 구조물의 절연기술에 관한 연구)

  • Lee, Sang-Chul;Kim, Im-Jung;Kim, Jong-Pal;Park, Sang-Jun;Yi, Sang-Woo;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.297-306
    • /
    • 2000
  • To improve the performance of MEMS devices, fabricating single-crystalline silicon HARS (high aspect ratio structure) with thicknesses of up to several tens of micrometers has been an active research topic in recent years. However, achieving electrical isolation, which is required for actuating a structure or sensing an electrical signal, has been one of the main problems in single-crystalline silicon HARS fabrication technologies. In this paper, new isolation technologies using high aspect ratio oxide beams and sidewalls are developed to achieve electrical isolation between electrodes of single-crystalline silicon HARS. The developed isolation technologies use insulating oxide structural supports from either the structural sides or from the bottom. In this case because the trench oxide supports have a depth of several tens of ${\mu}m$, the effects of residual stress must be considered. In this paper, insulating supports are fabricated using PECVD TEOS films, the residual stress of the insulating supports is measured, and the effect of the residual stress on the structure is analyzed. It is shown using microresonators, that the developed isolation technologies can be effectively used for HARS using single-crystalline silicon.

  • PDF

Micro Turbine Development and Performance Test (마이크로 터빈 개발 및 성능 평가)

  • Jeon, Byung-Sun;Jegal, Seung;Min, Hong-Seok;Bang, Junghwan;Kim, Sejun;Song, Seung-Jin;Joo, Young-Chang;Min, Kyoung-Doug
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.473-476
    • /
    • 2002
  • Micro turbine that is a component of micro power system refers to turbines on the scale of centimeters which can transmit power on the order of tens of Watts. Such devices can be used as propulsion or power generation devices for various potable and micro devices. An interdisciplinary team at Seoul National University has designed, fabricated and tested such a device, and this paper describes test results.

  • PDF

Development of Micro Turbine based on MEMS Technology (MEMS 기술을 이용한 마이크로 터빈의 개발)

  • 전병선;박건중;민홍석;김세준;송성진;주영창;민경덕
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.120-124
    • /
    • 2002
  • Microturbine refers to turbines on the scale of centimeters which can transmit power on the order of tens of Watts. Such devices can be used as propulsion or power generation devices for various military systems. An interdisciplinary team at Seoul National University has designed, and fabricated such a device, and this paper describes each phase. A commercial code has been used for design, and MEMS processes have been used for manufacturing. Finally, some preliminary test results are presented.

Micro Power System Development (마이크로 파워 시스템의 개발)

  • Park, Kun-Joons;Jeon, Byung-Sun;Min, Hong-Seok;Song, Seung-Jin;Min, Kyoung-Doug;Joo, Young-Chang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.381-386
    • /
    • 2001
  • This paper reports on the development of micro power system under way at Seoul National University. The interdisciplinary tin consists of members with various backgrounds of mechanics and materials. The need for micro power systems is explained, and a turbine under development is described. Design, and fabrication are introduced, and technical challenges in each phase are described. Furthermore, the interaction between the available fabrication methods and design is explained. Design involves use of commercially available codes to analyze flow fields, and fabrication takes advantage of the silicon wafer etching processes used to manufacture semiconductor devices.

  • PDF

A study on the cooling analysis of plastic products with high aspect ratio (고형상비를 갖는 플라스틱제품의 냉각해석에 관한 연구)

  • Hwang, Si-Hyun;Seo, Gi-Yeong;Kim, Chul-Kyu;Kim, Meong-Gi;Ji, Seong-Dae;Jung, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2008
  • Injection molding is representative process of plastic production. Most of numerical analyses for injection molding have been based on the Hele Shaw's approximation: two-dimensional flow analysis. The present work covers numerical analyses of injection molding using three-dimensional solid elements. The accuracy of the analysis results has been verified through some numerical examples in comparison with the various conditions. In this study, moldflow software was used to analyze the cooling analysis. The results of cooling analysis and testing catapult were compared for plastic products.

  • PDF

Special Simulation Technique of Multi-Faced Long Bolt Forging Process (장축 다각 볼트 제조공정의 시뮬레이션 기술)

  • Han, S.S.;Eom, J.G.;Jang, S.M.;Lee, M.C.;Joun, M.S.;Kang, S.J.;Son, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.44-47
    • /
    • 2009
  • In this paper, limitation of rigid-plastic finite element method caused from rigid-plasticity assumption and numerical problem is investigated in detail and a useful scheme is proposed to get rid of the plastic deformation in rigid or elastic region. A typical example of a possible long bar extrusion process is given, which may be impossible to simulate without using the proposed scheme. The scheme is successfully applied to simulating the long bolt forging processes.

  • PDF

Injection Molding of Hydrophobic Plastic Plates (사출 성형에 의한 소수성 플라스틱 기판 제작)

  • Yoo, Y.E.;Lee, K.H.;Yoon, J.S.;Choi, D.S.;Kim, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF