• Title/Summary/Keyword: 고형물질 유출

Search Result 33, Processing Time 0.028 seconds

Methane production by high temperature anaerobic digestion of food wastes

  • Song, Hyo-Jeong;Seo, Jin-Ho;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.266-269
    • /
    • 2005
  • This study targeted methane production and decrease of organic materials concentration by high temperature anaerobic digestion of food waste. A anaerobic reactor with circulation was employed and the operation condition as follows: high temperature of $45{\pm}2,$ 0.6 $kg-VS/m^3/d,$ HRT of 70 days, pH of $6.8{\sim}7.2$. The CODcr removal rate of $75%{\sim}85%$ with effluent of $14,000{\sim}19,000$ mg/L in case of influent of $75,000{\sim}95,000$ mg/L showed. In influent TS(Total Solid) and VS(Volatile Solid) concentration of $2.94%{\sim}5.09%,$ and $2.98{\sim}5.01%,$ the effluent concentration was $0.65{\sim}1.1%$ and $0.6%{\sim}0.8%,$ respectively. 0.28 $m^3-CH_4$ / kg-VS was averagely obtained in the system.

  • PDF

Development of Natural and Ecological Wastewater Treatment System for Decentralized Regions and Rural Communities (분산지역 및 농촌마을 하수처리를 위한 자연정화 고도처리 공법 개발)

  • Kim, Song-Bae;Kwon, Tae-Young;Han, Jung-Yoon;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.489-497
    • /
    • 2006
  • The feasibility of the Natural and Ecological Wastewater treatment System (NEWS) was examined for rural wastewater treatment in Korea. The intermittent trickling biofilter with high hydrophilic filter media was used for pretreatment for suspended solids and organic pollutants. The subsequent constructed wetland with porous granule materials was used for promoting nutrient removal. The results show that the removal efficiencies of the system were high with respect to the water quality parameters except COD. Even if the effluent from the biofilter did not meet the guidelines for wastewater treatment plant effluent in Korea in terms of $BOD_5$ and TN, the final effluent of the system meets the guidelines us to good performance of the constructed wetland. The regression analysis between pollutant loading rate and removal rate indicated that the system could have stable removal for SS, $BOD_5$, TN, and TP in the given influent ranges. The analysis in the winter period indicated that the wetland covered with transparent polycarbonate glass had the statble performance during the winter period dus to increase of temperature inside the wetland without any heating system. With the stable performance, effective poilutant removal, low maintenance, and cost-effectiveness, the NEWS could be considered as an alternative treatment system for decentralized regions and rural communities in Korea.

Mass Transfer during Salting and Desalting Processes of Chinese Cabbage (배추의 염절임 및 탈염 공정중 물질이동)

  • Kim, Dong-Kwan;Kim, Myung-Hwan;Kim, Byung-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.317-322
    • /
    • 1993
  • The diffusion phenomena of water, solid and reducing sugar in Chinese cabbage during salting (5$0^{\circ}C$, 25% salt solution) and desalting (5$0^{\circ}C$, distilled water) were investigated. Water loss and solid gain during salting were rapid in the first 6hrs and then almost leveled off. After 24hrs of salting, water loss and solid gain in 100g of initial wet Chinese cabbage were 33.35g and 6.26g respectively. Moisture content was changed from 94.29% to 83.11% during 24hrs of salting. The reducing sugar concentration was also changed from 29.2 mg/$m\ell$ to 6.5mg/$m\ell$, which was linearized as a function of the square root of salting time and showing that Y=30.1841-5.0269√t. After 24hrs salting, water gain and solid loss during desalting were rapid in the first 4hrs and then increased linearly. After 12hrs of desalting, the water gain and solid loss in 100g of initial wet Chinese cabbage were 20.82g and 9.14g respectively. The amount of solid loss after 12hrs desalting was higher than that of solid gain after 24hrs salting due to the diffusion of solute presented initially in the Chinese cabbage during salting and desalting. The concentration of salt in Chinese cabbage after 12hrs desalting was 2.98% which was a suitable salt concentration for the preparation of Kimchi. At this time, the concentration of reducing sugar was only 1.6mg/$m\ell$. The linear regression equation of reducing sugar concentration during desalting was Y=6.7854-1.5992√t.

  • PDF

Therapeutic efficacy of the photoactivated sickle cells as novel drug delivery vehicle (약물전달 시스템 개발을 위한 여기된 광감응제의 응용)

  • Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.958-960
    • /
    • 2015
  • Sickle cells possess a unique combination of traits that may enable their use as models for novel synthetic tumor targeting controlled release drug carriers with the ability to treat disseminated tumors in advanced metastatic disease. In this study, we assess the ability of light-activated release sickle cells to enhance tumor delivery of the fluorescent dye calcein by delayed photolysis controlled release compared to free systemic administration of calcein. Sickle cells from mouse models of the disease were shown to preferentially accumulate in tumors compared to adjacent tissue, in 4T1 tumors in mice on a time scale about 12 hours. Sickle cells photosensitized with protoporphyrin IX achieved delayed release of 50% of contents 8-16 hours after photoactivation, which was deemed useful for in vivo delivery of cargo to tumors given the tumor accumulation time of the sickle cells. Sickle cells may be useful as a model for new synthetic drug carrier particles with delayed photolysis controlled release properties.

  • PDF

Computer and Experimental Simulation of Landfill Leachate (Computer Simulation 에 의한 매립지(埋立地)의 침출수해석(沈出水解析))

  • Lee, Jung Jun;Lee, Woo Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.41-50
    • /
    • 1987
  • The present study was conducted to measure and predict the leachate generation and to establish the methods of leachate control and handling by both field and lab-lysimeter studies. The change of biodegradable matter, field capacity, dry density, quantity and quality of leachate as a function of time of landilling were measured. The model based on the theory of unsaturated flow and contaminant transport in porous media was developed and simulation model was used for the prediction of movement of landfill moisture and for the strength in leachate in terms of organic and inorganic contaminant. The model constructed from the present study in terms of unsaturated decomposition and transport combined with the evapotranspiration and surface runoff showed good agreement with the results obtained by lysimeter studies.

  • PDF

Production of Bioactive Compounds from Fungi Grown on Ginseng-Steaming Effluent (인삼 유출액에서 생육한 곰팡이로부터 생리 활성 물질의 생산)

  • Jang, Jeong-Hoon;Kim, Jae-Ho;Kim, Na-Mi;Kim, Ha-Kun;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • We described production of bioactive compounds from fungi grown on Korean ginseng-steaming effluents (GSE) for develop high-value added nutraceuticals from Korean GSE. Hansenula anomala KCCM 11473, which grew well in Korean GSE had high RNA content, and its optimal autolysis conditions were established to produce 5'-ribonucleotides (13.9~28.5 mg/g of biomass) at $55^{\circ}C$ and pH 5.0 for 24 h. 5'-Phosphodiesterase and adenyl deaminase were not effective in increasing the yield of 5'-ribinucleatides, but the yield of IMP increased significantly only after the addition of 1.0% adenyl deaminase. Saccharomyces cerevisiae showed the highest growth in the GSE medium. 267.1 mg of S. cerevisiae biomass was produced from 1 g of GSE solid and medicinal ginsenoside-$Rg_3$ contents was determined with 0.033 mg. Mucor miehei KCTC 6011 produced approximately 120 mg of chitosan per g-dry mycelium in 84 h at $25^{\circ}C$ when grown in the GSE (pH 8.0) supplemented with 0.5% yeast extract and 0.002% $CuSO_4$. Chitosan produced by M. miehei KCTC 6011 have deacetylated approximately 56% and its viscosity and molecular weight of the chitosan were 80 cps and $1.07\times10^3$ kDa, respectively. The chitosan at 1.5 mg/ml inhibited 73.9% of the mycelium growth of Rhizotonia solani in 60 h.

A Study on Efficiency of Water Purification of Korean Village Bangjuk[dike] as a Means of Ecological Watershed Management (생태적 유역관리 도구로써 마을방죽의 수질정화 효율성 고찰)

  • An, Byung-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.90-100
    • /
    • 2012
  • This study centering on 10 village - Bangjuks analyzed multifunctionality value of village Bangjuks which have been main water treatment system in Korean traditional villages. On the basis of understanding the structure and character of components such as the well, common spring, village waterway and others which making water-flow and consisting of aquatic system in Korean traditional village Bangjuk, the conclusion as the instrumental device of social and ecological role and ecological watershed management, securing the ecosystem soundness of the damaged or deteriated aquatic ecosystem due to the industrialization and urbanization is as below; 1. The traditional village Bangjuk was environmentally friendly hydraulic system which gathers waterways of village into a point including sewage water, retains and flows out to village through agricultural waterway. Through this Bangjuk, they have managed sewage and rainfall runoff flowed out village efficiently. It is not only a detention system of water but a kind of eco-friendly system that flow out water into the rivers after reusing and filtering it. 2. Around five traditional villages and five villages after modernization, this study classified the types of village Bangjuk as three types considering geographic location, size, etc; marsh type of low swamp, high water -low rice field type of natural flow stucture, low water - high rice field type requiring artificial irrigation facility. All the five traditional villages were turned out to be marsh type of low swamp. Geoji, Sanjeri, Ma-am, Yangchon of the agricultural villages were high water-low rice filed type, and Sangchoenri village was classified low water-high rice field type. 3. This study checked up the function of water purification of village Bangjuk. In Wonteo and Geji villages affected by discharge of village sewer and domestic sewage, the efficiency of ammonia nitrogen($NH_3-N$) and total phosphorus(T-P) was 56~95%, which was high. In Sangcheonri and Sanjeri villages strongly affected by stall and farmland, the efficiency of suspended solids(SS) was 70~85%, and that of total nitrogen(T-N) and total phosphorus(T-P) was 5.3~65%. 4. A water purification system can be found out in the system of village Bangjuk that filter out village sewage and rainfall runoff flowed through the settle and filter of pollution source and denitrification of plants. Through this system of village Bangjuk, it must be used as the basic facilities for the ecological watershed management. The sewage management system of village Bangjuk as a eco-filter must be used and studied as an eco-friendly facility for the ecological watershed management around the subwatershed and catchment.

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

A study on the introduction of organic waste-to-energy incentive system(II): material and energy balance of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(II): 바이오가스화 물질·에너지수지)

  • Moon, Hee-Sung;Kwon, Jun-Hwa;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.77-86
    • /
    • 2021
  • In this study, to use as basic data for the organic waste resource energy incentive system, the energy efficiency is evaluated through the mass balance and energy balance calculation results of the anaerobic digester where food waste, food waste leachate and various organic wastes are treated. As a result of the mass balance analysis for 11 biogasification facilities, it was confirmed that 21.1% of process water and 25.7% of tap water were input in large amounts, excluding organic waste. Accordingly, it accounted for 87.6% of the total effluent of linked treated water. In addition, considering that 15.7% of the total input volume is converted to biogas and the average total solids (TS) is 22%, an average material conversion rate of 75% was confirmed. As a result of the energy balance analysis, the energy conversion rate was confirmed to be 78.5% on average by analyzing the biogas calorific value compared to the potential energy of the influent. The average biogas production efficiency including external energy sources for biogas production was 69.4%, and the biogas plant efficiency to which unused effluent energy was applied was 58.9% on average.

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF