Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.102-105
/
2019
본 논문에서는 심층 신경망 검색 방법을 사용하여 이미지 고해상도화를 위한 심층 신경망을 설계하는 방법을 구현하였다. 일반적으로 이미지 고해상도화, 잡음 제거 및 번짐 제거를 위한 심층신경망 구조는 사람이 설계하였다. 최근에는 이미지 분류 등 다른 영상처리 기법에서 사용하는 심층 신경망 구조를 검색하기 위한 방법이 연구되었다. 본 논문에서는 강화학습을 사용하여 이미지 고해상도화를 위한 심층 신경망 구조를 검색하는 방법을 제안하였다. 제안된 방법은 policy gradient 방법의 일종인 REINFORCE 알고리즘을 사용하여 심층 신경망 구조를 출력하여 주는 제어용 RNN(recurrent neural network)을 학습하고, 최종적으로 이미지 고해상도화를 잘 실현할 수 있는 심층 신경망 구조를 검색하여 설계하였다. 제안된 심층 신경망 구조를 사용하여 이미지 고해상도화를 구현하였고, 약 36.54dB 의 피크 신호 대비 잡음 비율(PSNR)을 가지는 것을 확인할 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.9
/
pp.1738-1743
/
2017
This paper presents an efficient image stitching method using preprocessing in order to generate a super resolution image. Two-dimensional (2D) scanners are consistently used in various areas but they have limitations such as paper sizes and materials. To overcome these problem with low-cost, an efficient imaging stitching method is proposed for producing a super resolution panorama image. To scan a very large sized paper using mobile phones, a simple portable cradle which fixes height is employed producing an input image set. To improve matching performance, a preprocessing method is introduced before searching correspondences. Then alpha blending is applied to an input image set to produce a super resolution panorama image. The proposed method is faster and easier than the existing method which is employed by Open CV. Experiment results show that the proposed method is three times faster and performs better than the existing method.
Seo, Wonyong;Kim, Soo Ye;Kim, Juyoung;Kim, Munchurl
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.220-223
/
2020
초해상화란, 저해상도의 영상으로부터 고해상도 영상을 복원하는 이미지 처리 기법이다. 최근 영상 출력 장치의 발전으로 고해상도의 영상을 출력할 장치는 많아지는 한편, 이에 맞는 고해상도 영상을 찍을 영상 기록 장치의 보급은 이에 비해 부족한 실정이다. 따라서 저해상도의 영상을 고해상도 영상으로 변환하는 초해상화 연구는 많은 분야에서 활용되고 있다. 문화재 영상에서의 초해상화는 특히 기존 문화재의 질감, 무늬 등을 보존해야하기 때문에 정교한 초해상화 과정이 요구된다. 본 논문에서는 문화재 영상의 초해상화 과정에 집중해, 기존 문화재의 질감, 무늬 등을 잘 보존하면서 영상 데이터의 양이 상대적으로 적은 경우에도 활용 가능한 기계학습 기범, GLM-SI를 이용한 문화재 영상 초해상화 방법을 제안한다. GLM-SI 를 사용한 초해상화 결과, 문화재 영상에서 선행 방법인 SI 에 비하여 4 배 초해상화에서 PSNR 0.12dB, SSIM 0.017, 8 배 초해상화에서 PSNR 0.23dB, 0.033 의 성능적 향상을 얻을 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.193-196
/
2021
홀로그램(Hologram)은 3차원 물체에서 나오는 빛의 정보를 제어하는 기술이다. 현재는 컴퓨터 생성 홀로그램(CGH)으로 생성한 디지털 홀로그램에 관한 연구, 특히 물체에서 나오는 빛의 정보를 최대한 기록하고 재현하여 디지털 홀로그램의 해상도를 향상 시키려는 연구가 활발히 진행되고 있다. 이에 본 논문에서는 고해상도 홀로그램 영상을 얻기 위해 딥러닝 기반 초해상도(Super Resolution) 네트워크를 훈련 및 최적화하여, 저해상도 위상 홀로그램 영상으로부터 높은 화질의 홀로그램 영상을 재현하는 고해상도 위상 홀로그램 영상을 생성하는 것을 목표로 한다. 이때 위상 홀로그램 영상의 특성을 이용한 순환 손실 함수(Circular loss function)를 새롭게 제안하며, 기존의 이미지 초해상도 신경망 모델을 학습시킬 때 자주 사용하는 L1 손실 함수와 비교했을 때 약 0.13dB 정도의 성능 향상이 있었다.
In most digital imaging applications, high-resolution images or videos are usually desired for later image processing and analysis. The image signal obtained from general imaging system occurs image degradation during the process of image acquirement caused by the optics, physical constraints and the atmosphere effects. Super-resolution reconstruction, one of the solution to address this problem, is image reconstruction technique that produces a high-resolution image from several low-resolution frames in video sequences. In this paper, we propose an improved super-resolution method using Projection onto Convex Sets (POCS) method based on Shift & Add (S&A). The image using conventional algorithms is sensitive to noise. To solve this problem, we propose a fusion algorithm of S&A and POCS. Also we solve the problem using BLPF (Butterworth Low-pass Filter) in frequency domain as optical blur. Our method is robust to noise and has sharpness enhancement ability. Experimental results show that the proposed super-resolution method has better resolution enhancement performance than other super-resolution methods.
The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.417-417
/
2023
도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.
High-resolution satellite image mosaics are becoming increasingly important in the field of remote sensing image analysis as an essential image processing to create a large image constructed from several smaller images. In this paper, we present an automatic seamline extraction technique and the procedure to generate a mosaic image by this technique. For more effective seamline extraction in the overlap region of adjacent images, an NDVI-based seamline extraction technique is developed, which takes advantage of the computational time and memory. The Normalized Difference Vegetation Index(NDVI) is an index of plant "greeness" or photosynthetic activity that is employed to extract the initial seamline. The NDVI can divide into manmade region and natural region. The cost image is obtained by the canny edge detector and the buffering technique is used to extract the ranging cost image. The seamline is extracted by applying the Dijkstra algorithm to a cost image generated through the labeling process of the extracted edge information. Histogram matching is also conducted to alleviate radiometric distortion between adjacent images acquired at different time. In the experimental results using the KOMPSAT-2/3 satellite imagery, it is confirmed that the proposed method greatly reduces the visual discontinuity caused by geometric difference of adjacent images and the computation time.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.141-141
/
2019
토양수분은 수문 분석에 있어 매우 중요한 인자 중 하나이며 최근 기후변화로 인한 가뭄, 홍수 및 산불발생과 같은 물 관련 재해 발생에 직 간접적으로 영향을 미치기 때문에 지표 토양수분산정은 매우 중요하다. Sentinel-1 SAR(Synthetic Aperture Radar)는 능동형 위성으로 10m의 공간해상도로 제공되기 때문에 기존의 토양수분 전용위성인 SMOS(Soil Moisure and Ocean Salinity), SMAP(Soil Moisture Active Passive) 및 GCOM-W1(Global Change Observation Mission Water) 등 다르게 고해상도 토양수분 산정이 가능하다. 그러나 Sentinel-1 SAR 센서에서는 고해상도 지표 관측 이미지 자료만 제공하며, 토양수분 자료를 직접적으로 제공하지 않는다. 따라서 본 연구에서는 2018년도 Sentinel-1 A/B IW(Interferometric Wide swath) 모드의 VH(Vertical Transmit - Horizontal Receive) 편파 영상과 Sentinel-1 SAR 위성자료 전처리 도구인 SNAP(Sentinel Application Platform)을 이용하여 후방산란계수를 산정하였으며, 산정된 후 방산란계수와 농촌진흥청에서 제공하는 65개 지점의 실측 TDR(Time Domain Reflectrometry) 토양수분의 관계를 이용하여 회귀모형을 도출 및 토양수분 공간분포를 산정하였다. 비록 불확실성은 어느정도 발생 하였으나, 전체적으로 TDR 관측값과 $10m{\times}10m$ 해상도의 Sentinel-1 SAR 기반 토양수분이 일치하는 경향을 보였다. 본 연구 결과는 수문, 농업, 산림, 재해 등 다양한 분야에 활용될 수 있을 것으로 판단된다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.4
/
pp.543-548
/
2021
The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.