• Title/Summary/Keyword: 고폭탄두

Search Result 3, Processing Time 0.02 seconds

Prelinimary Engagement Effect Analysis of Isotropic Kinetic Energy Warhead (등방성 운동에너지 탄두의 교전 효과 예비 분석)

  • Shim, Sang-Wook;Hong, Seong-Min;Seo, Min-Guk;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.440-448
    • /
    • 2015
  • Kinetic energy(KE) rod warhead system is a new interceptor which combines advantages of existing ones. This system is less dependant on a precision guidance than direct hit type warhead and gives high penetration rates than blast fragmentation type warhead. In this paper, isotropic KE rod warhead system is introduced with detonation/deployment model. A penetration effects of the deployed rods are calculated using TATE penetration equation. Also, an engagement performance analysis method is suggested. Finally, an optimal detonation time and engagement geometry is derived by Monte-Carlo simulation in various engagement situation using the performance analysis factor.

The Study on the Fragment Ejection Velocity and Spray Angle from a High Explosive Cylindrical Warhead (실린더형 HE 탄두 폭발 시 파편의 속도 및 발사각 추정방법 연구)

  • Hwang, Changsu;Park, Younghyun;Park, Seikwon;Jung, Daehan;Lee, Moonsik;Kang, Sunbu;Kim, Deuksu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.904-912
    • /
    • 2019
  • We have studied the numerical analysis about the fragment ejection velocity and spray angle when the High Explosive warhead detonated at proximity distance at an aircraft. To study the physical quantities about the warhead components is very important to assessment the vulnerability of aircraft. Generally, the physical quantities about the components of a warhead such as the mass, length, diameter and charge to mass ratio are unknown. Therefore, it is required to estimate the physical quantities by using physical continuities of similar threats. The empirical formulas to understand the dependence among charge to mass ratio, length and diameter ratio were driven by using the physical parameters of similar threatening such as terrier, sparrow. As a result, we confirmed that the dead mass ratio was closed to 20% of warhead mass since the metal case of the proximity threat acts as a simple carrier. This implies that the effective length and diameter of High Explosive Compound is smaller than the length and diameter of warhead, and become a key to understand the large ejection gradient velocity and small spray angle of fragments within 6 degree.

A Study on the Penetration Characteristics of a Steel Fragment Impacting on the Target Plate of Aluminum 2024 (알루미늄 2024 표적에 대한 HE 탄두 파편의 관통 특성 연구)

  • Kim, Deuksu;Kang, Sunbu;Jung, Daehan;Chung, Youngjin;Park, Yongheon;Park, Seikwon;Hwang, Changsu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.257-268
    • /
    • 2018
  • We have studied the damage mechanism of a metallic thin plate by the highly energetic fragments generated from high explosive(HE) warhead. The penetration process has presumed that the velocity of a fragment is in the range of 350 m/s to 3353 m/s, the thickness of Aluminum 2024 target plate is in the range of 1 mm~6.3 mm thick. The mass of fragment with hemisphere nose shape is in the range of 0.32 g to 16 g. The analytical solution for penetration process has been derived by using the report of the project THOR. The results of analysis implied that the closed forms by an exponentially decay function well fit the change of the ballistic limit velocity, loss velocity and loss mass of fragment as the mass of fragment and the thickness of target plate increase.