• Title/Summary/Keyword: 고체 입자

Search Result 402, Processing Time 0.035 seconds

Contact Charging and Electrphoresis of a Glassy Carbon Microsphere (유리상 탄소입자의 직접 접촉충전에 의한 전기영동 현상연구)

  • Choi, Chang Yong;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.568-573
    • /
    • 2016
  • We investigated the charging characteristics of a conducting solid sphere (glassy carbon sphere) comparing with that of a water droplet and check the applicability of the perfect conductor theory. For the systematic research, sphere size, applied voltages, viscosity of the medium were changed and the results were compared with that of corresponding water droplets and the perfect conductor theory. Basically, a glassy carbon sphere follows the perfect conductor theory but the charging amount was lower as much as 70~80% of theoretical prediction value due to oil film formed between electrode and a carbon sphere. We hope this result provides basic understandings on the solid sphere contact charging phenomenon and related applications.

A Meched Asymptotic Analyis of Dust Particle Ignition (접합 점근법을 이용한 고체입자의 점화에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.471-476
    • /
    • 1986
  • 본 연구에서는 구모양의 석탄가루나 곡식가루등 비금속성 고체입자가 압축파 (shock wave)에 의해 생성된 고온의 기체속에 놓여있을때 일어나는 점화현상을 활성 화에너지(activation energy)가 큰 경우의 접합 점근법을 이용 해석하였다. 이렇게 하여 얻어진 석탄입자에 대한 점화지연시간을 실험치와 비교 이의 타당성을 입증하였 다.

타이탄의 2-3 micron 영역 스펙트럼에 나타나는 대기 중 입자에 의한 흡수밴드와 고체 탄화수소화합물 흡수밴드 모델의 비교

  • Sim, Chae-Gyeong;Kim, Sang-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.102-102
    • /
    • 2012
  • 타이탄의 근적외선 영역 스펙트럼에서 나타나는 특유의 넓은 흡수밴드를 고체 탄화수소화합물과 질소화합물의 조합으로 설명하고자 한다. 이 흡수 밴드는 대기권의 하층부에 존재하는 연무(haze)에 의한 것으로, 3.3 - 3.4 micron 부근과 2.30 - 2.35 micron 부근에서 유사한 형태가 발견됐다. 두 파장대 모두 C-H 스트레칭 모드가 존재하는 영역이라는 공통점이 있으며, 그 형태가 넓은 흡수밴드로 나타나므로 대기 중에 고체상태의 탄화수소화합물이 존재하는 것으로 유추할 수 있으며, 관련 분자들의 실험값과 복사전달모델을 이용하여 이를 설명하고자 한다. 또한, 이 흡수밴드는 고도에 따라 그 형태와 세기가 달라지므로, 연무 입자들의 고도에 따른 수직분포 및 크기 등을 파악할 수 있다. 이 연구에서는 기존에 타이탄에서 발견된 $CH_4$, $C_2H_6$, $CH_3CN$의 고체 분광선과, 해당 영역에서 흡수선을 보이는 $C_5H_{12}$, $C_6H_{12}$, $C_6H_{14}$ 등의 고체 분광선을 이용한 모델을 Cassini 탐사선의 VIMS 관측자료로부터 유도한 파장 및 고도에 따른 광학적 깊이 변화량과 비교하여 보여주고자 한다.

  • PDF

Measurement of Pressure-coupled Combustion Instability Characteristics : Acoustic Attenuation by Particulate Matter(Al) and Combustion Response of Solid Propellant (고체로켓 연소관 내 압력섭동에 대한 입자상 물질에 의한 음향 감쇠 및 연소응답 특성 측정)

  • Lim, Jihwan;Lee, Sanghyup;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.16-26
    • /
    • 2014
  • T-Burner tests of an Al/HTPB propellant in conjunction with a Pulsed DB/AB Method were conducted to find an acoustic amplification factor. Aluminum-free and aluminum-heavy propellants were examined. Instant surface ignition was successfully made by the use of a supplementary propellant of fractionally higher reaction rate. With the presence of higher aluminum concentration in the propellants, the pressure perturbations were promptly damped down and the pressure fluctuations were no longer dispersive. Addition of aluminum particles into the propellant was advantageous for stabilizing pressure-coupled unstable waves.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Development of Stabilizing Agent for Double Base Propellant Rocket Motor (복기 추진제 로켓 모타 연소 안정제 개발)

  • 손원경;최성한;이원복
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.04a
    • /
    • pp.23-26
    • /
    • 1994
  • 130mm D.B. 추진기관의 고온 시험에서 나타난 극심한 이상 연소 현상을 해결하기 위해 미세한 고체 입자들을 연소 가스에 분산시켜 불안정 연소를 억제하는 particulate damping 효과를 연구하였다. 고체 입자로서 효과적인 것으로 알려진 $K_2$$SO_4$. ZrC, Graphite를 CTPB, HTPB 고분자 물질에 충진시켜 epoxide, isocyanate 반응기와 가교 반응을 일으킴으로써 고무상의 탄성체 성질을 갖게 하는 $K_2$$SO_4$/CTPB, ZrC/Graphite/HTPB, ZrC/Graphite/AP/HTPB, ZrC/AP/HTPB 조성의 연소 안정제를 개발하였다. 이 연소 안정제는 외경 17mm, 길이 1000mm의 안정봉 형태로 제작하여 모타의 중심 cavity에 조립한 후 지상 연소 시험을 통하여 성능을 확인하였다. 시험 결과, 조성에 AP를 포함시켜 연소 안정제에 일정한 연소 속도를 부여하여 추진제 grain 연소 동안 고체 입자를 연소 가스에 분산되게 설계한 ZrC/Graphite/AP/HTPB, ZrC/AP/HTPB 조성의 연소 안정제가 불안정 연소 억제에 효과적인 것으로 나타났다.

  • PDF

A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions (부유 입자를 해석하기 위한 운동량 교환/가상영역-격자볼츠만 방법)

  • Jeon, Seok Yun;Yoon, Joon Yong;Kim, Chul Kyu;Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.347-355
    • /
    • 2016
  • This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

Effect of Particle Size Distribution on the Sensitivity of Combustion Instability for Solid Rocket Motors (입자 크기 분포도를 고려한 고체로켓 모터의 연소 불안정 민감도 예측)

  • Joo, Seongmin;Kim, Junseong;Moon, Heejang;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.37-45
    • /
    • 2015
  • Prediction of combustion instability within a solid-propellant rocket motor has been conducted with the classical acoustic analysis. The effect of particle size distribution on the instability has been analyzed by comparing the log-normal distribution to the fixed mono-sized particle followed by a survey of motor length scale effect between the baseline model and small scale model. Particle damping effect was more efficient for the small scale motor which has a relatively high unstable mode frequencies. It was also revealed that the prediction results by considering the particle size distribution show an overall attenuation of fluctuating pressure amplitude with respect to the mono-sized case.

Analysis of Hydrodynamic Similarity in Three-Phase Fluidized Bed Processes (삼상유동층 공정에서 수력학적 Similarity 해석)

  • Lim, Ho;Lim, Hyun-Oh;Jin, Hae-Ryoung;Lim, Dae-Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.790-797
    • /
    • 2011
  • Hydrodynamic similarity was analyzed by employing scaling factor in three phase fluidized beds. The scaling factor was defined based on the holdups of gas, liquid and solid particles and effectivity volumetric flux of fluids between the two kinds of fluidized beds with different column diameter. The column diameter of one was 0.102 m and that of the other was 0.152 m. Filtered compressed air, tap water and glass bead of which density was 2,500 kg/$m^3$ were used as gas, liquid and solid phases, respectively. The individual phase holdups in three phase fluidized beds were determined by means of static pressure drop method. Effects of gas and liquid velocities and particle size on the scaling factors based on the holdups of each phase and effective volumetric flux of fluids were examined. The deviation of gas holdup between the two kinds of three phase fluidized beds decreased with increasing gas or liquid velocity but increased with increasing fluidized particle size. The deviation of liquid holdup between the two fluidized beds decreased with increasing gas or liquid velocity or size of fluidized solid particles. The deviation of solid holdup between the two fluidized beds increased with increasing gas velocity or particle size, however, decreased with increasing liquid velocity. The deviation of effective volumetric flux of fluids between the two fluidized beds decreased with increasing gas velocity or particle size, but increased with increasing liquid velocity. The scaling factor, which was defined in this study, could be effectively used to analyze the hydrodynamic similarity in three phase fluidized processes.

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process (연속식 2단 기포 유동층 공정의 운전특성)

  • Youn, Pil-Sang;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.