• Title/Summary/Keyword: 고체 로켓모터

Search Result 92, Processing Time 0.024 seconds

A Study on Improvement of Performance of Sorbitol Model Rocket (솔비톨을 이용한 모델로켓의 성능향상에 대한 연구)

  • Park, Ju-Hyun;Kim, Tae-Su;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.419-422
    • /
    • 2006
  • Improvement of performance of sorbitol model rocket was studied. The rocket designed in this work was compared with the rocket manufactured previously with respect to the shape of body, grain of rocket motor, motor case and recovery system. From this comparative work, it is found that mass ratio is required to be increased and the rocket was designed under safety regulation.

  • PDF

Review of the Solid Propulsion Trend in the Launch Vehicle(1) (발사체 고체 추진기관 동향 리뷰(1))

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.97-107
    • /
    • 2012
  • In general, solid propulsion offers cost effective, large thrust capabilities comparing to the liquid propulsion which offers high specific impulse and restart capabilities. Therefore, solid propulsion is well fitted for the first stage and boosters. Building Block Launcher(BBL) approach has been studied for the launch vehicle because of cost effectiveness, limited development time and low risk. Using of the carbon fiber epoxy resin in the solid rocket motor case is expanded, and specially high strength fibers are more attracted since its inert mass reduction.

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

Performance Design of TCO System of the Solid Rocket Motor (고체 로켓모터의 TCO 성능 설계)

  • Hwang, Yong-Seok;Yun, Myeong-Won;O, Jong-Yun;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.101-106
    • /
    • 2006
  • This paper describes performance design of a solid rocket motor on which thrust cut-off system is installed, and evaluates performance of a rocket motor according to a size of TCO ports. TCO system installed on motors was made to carry out firing tests, and the trend of thrust due to various sizes of TCO port was analyzed to find the existence of the port size for maximum reversal thrust. Conservation equations were used to design performance of motors and to analyze test results. This technique for performance design will be usefully applied to the design of similar TCO systems.

Performance Design of TCO System of the Solid Rocket Motor (고체 로켓모터의 TCO 성능 설계)

  • Hwang Yong-Seok;Yoon Myong-Won;Oh Jong-Yun;Bae Joo-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • This paper describes performance design of a solid rocket motor on which thrust cut-off system is installed, and evaluates performance of a rocket motor according to a size of TCO ports. TCO system installed on motors was made to carry out firing tests, and the trend of thrust due to various sizes of TCO port was analyzed to find the existence of the port size for maximum reversal thrust. Conservation equations were used to design performance of motors and to analyze test results. This technique for performance design will be usefully applied to the design of similar TCO systems.

  • PDF

System Design and Fundamental Experiment for Thrust Control of $GO_2$/PE Hybrid Rocket ($GO_2$/PE 하이브리드 로켓의 추력제어를 위한 시스템 설계 및 기초실험)

  • Lee, Yong-Wu;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2010
  • In this study, basic research on the thrust control by controling oxidizer mass flow rate of a $GO_2$/PE hybrid rocket is presented. For this purpose, hybrid rocket system including oxidizer flow control system and data acquisition system was developed. To control oxidizer mass flow rate, we used needle valve with stepping motor which was controled by LabVIEW program. During the fundamental experiments, this system managed to follow the pre-programmed (20 N - 10 N - 20 N - 0 N) thrust level.

Numerical Study on the Unsteady Solid Rocket Propellant Combustion with Erosive Burning (침식효과를 고려한 고체 로켓 추진제의 비정상 연소에 관한 수치해석)

  • Lee, Sung-Nam;Baek, Seung-Wook;Kim, Kyung-Moo;Kim, Yoon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.774-779
    • /
    • 2009
  • A numerical modelling was performed to predict unsteady combustion processes for the AP/HTPB/Al propellant in a solid rocket motor. Its results were compared with the experimental data. Temporal pressure development was found to match quite well with measured data. A change in propellant surface was traced using the moving grid. The propellant thickness change was also observed to confirm the erosive burning effect.

Numerical and Experimental Study on Infrared Signature of Solid Rocket Motor (고체로켓모터의 적외선 신호에 관한 수치적·실험적 연구)

  • Kim, Sangmin;Kim, Mintaek;Song, Soonho;Baek, Gookhyun;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.62-69
    • /
    • 2014
  • Infrared signature of rocket plume plays an important role for detection, recognition, tracking and minimzing for low observability. Infrared signatures of rocket plume with reduced smoke propellant and smokeless propellant are measured. In order to estimate the infrared signature of rocket plume, CFD analysis for flow structure of plume is performed, and layered integration method for estimating of infrared signature is used. Numerical and experimental results were in good agreement. Both propellants had similar infrared signature. Strong peak at $4.3{\mu}m$ region in the experimental results is appeared due to experimental error arising from the calibration procedure.

이상 유동이 존재하는 고체 로켓 노즐내에서의 성능손실에 대한 수치적 연구

  • 유만선;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.30-30
    • /
    • 2000
  • 일반적인 소형 고체로켓의 모터 내에는 연료 첨가제로써 알루미늄이 함유되는데, 연소 시 산화된 이 성분은 액적 상태로 이동하여 노즐부내에 이상유동장을 형성시킨다. 이러한 산화알루미늄입자는 노즐벽면에 충돌, 점착하여 기계적, 열적 에너지전달을 일으키며 노즐벽면의 삭마를 유발시키는 한편, 가스유동과의 속도 차, 온도차로 인해 저항요소로 작용하면서 노즐의 추력 성능 손실에 간접, 직접적인 원인이 된다.(중략)

  • PDF

Effect of Particle Size Distribution on the Sensitivity of Combustion Instability for Solid Rocket Motors (입자 크기 분포도를 고려한 고체로켓 모터의 연소 불안정 민감도 예측)

  • Joo, Seongmin;Kim, Junseong;Moon, Heejang;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.37-45
    • /
    • 2015
  • Prediction of combustion instability within a solid-propellant rocket motor has been conducted with the classical acoustic analysis. The effect of particle size distribution on the instability has been analyzed by comparing the log-normal distribution to the fixed mono-sized particle followed by a survey of motor length scale effect between the baseline model and small scale model. Particle damping effect was more efficient for the small scale motor which has a relatively high unstable mode frequencies. It was also revealed that the prediction results by considering the particle size distribution show an overall attenuation of fluctuating pressure amplitude with respect to the mono-sized case.