• Title/Summary/Keyword: 고체층 높이

Search Result 35, Processing Time 0.026 seconds

Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor (3 kW급 매체순환식 가스연소기의 고체순환특성)

  • Ryu, Ho-Jung;Park, Jaehyeon;Kim, Hong-Ki;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1057-1062
    • /
    • 2008
  • To overcome disadvantages of conventional two interconnected fluidized beds system, a novel two-interconnected fluidized bed process has been adopted to 3kW chemical-looping combustor. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables such as gas velocity through the solid injection nozzle, fluidizing velocity, solid height, geometry of solid intake hole, bed temperature on solid circulation rate have been investigated in a 3kW chemical-looping combustor. The solid circulation rate increased as the solid height and the opening area of solid intake holes increased. The effect of the fluidizing velocity and the bed temperature were negligible. Moreover, long-term operation of continuous solid circulation up to 50 hours has been performed to check feasibility of stable operation. The pressure drop profiles in the bubbling beds and the downcomers were maintained steadily and solid circulation was smooth and stable.

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

Development of Solid Separator for Selective Solid Circulation in Two-interconnected Fluidized Beds System (2탑 유동층 시스템에서 선택적 고체순환을 위한 고체분리기 개발)

  • Ryu, Ho-Jung;Park, Young Cheol;Lee, Seung-Yong;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.195-202
    • /
    • 2009
  • As a basic research of developing two-interconnected fluidized beds system for selective solid circulation, a solid separator was developed to separate fine and coarse particles by means of particle size difference with particle size separation system equipped with metal screen. The effects of gas velocity, height of solid separator, and separation area on the solid separation rate were investigated as well. The solid separation rate increased as the gas velocity, height of solid separator, and separation area increased. As the gas velocity and height of the solid separator increased, the variation of the solid separation rate was consistent with that of bubble size. Consequently, coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 4.4 to 127 g/min. We also proposed two interconnenced fluidized beds system for sorption enhanced water-gas shift process equipped with the developed solid separator.

Effect of Lower Bed Height on Collapse Velocity in the Two-Stage Bubbling Fluidized-Bed with a Standpipe for Solid Transport (고체 수송관이 있는 2 단 기포 유동층에서 붕괴 속도에 대한 하단 층 높이의 영향)

  • Khurram, Muhammad Shahzad;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.864-870
    • /
    • 2018
  • The effect of lower bed height on the collapse velocity was investigated for a two-stage bubbling fluidizedbed (0.1 m in diameter, 1.2 m high) connected with a standpipe (0.025 m in diameter) for solid transport. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3625kg/m^3$ in apparent density) and fine (< $147{\mu}m$ in diameter and $4079kg/m^3$ in apparent density) particles as solid particles. Mixing ratio of fine particles, height of the lower bed and the distributor of the upper bed were considered as experimental variables. The collapse velocity increased with static height of the lower bed. However, the effect decreased as the mixing ratio of fine particles increased. The effect seemed to be attributed to the increase in height of the dense layer of coarse particles that prevented the gas from flowing into the standpipe, not in pressure drop for the standpipe, as the bed height increased. The collapse velocity decreased a little as the pressure drop of the distributor of the upper bed increased. An improved correlation was proposed for predicting the collapse velocity.

A Study on Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템 연구)

  • Ryu, Ho-Jung;Jang, Myoung-Su;Kim, Hong-Ki;Lee, Dong-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • To apply to novel two-interconnected fluidized beds system for selective solid circulation, a solid separator and a solid circulation system were developed. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, and diameter of solid injection nozzle increased. However, the effect of the fluidization velocity was negligible. Coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 453 g/min. The solid circulation rate increased as the gas velocity through the solid injection nozzle, solid height, and the number of solid intake holes increased. However, the effect of the fluidization velocity was negligible. Fine particle was circulated using the solid circulation system and the solid circulation rate was ranged from 65 to 390 g/min. We also proposed two interconnenced fluidized beds system for selective solid circulation equipped with the developed solid separator and the solid circulation system. Long-term operation of continuous solid circulation up to 20 hours has been performed to check feasibility of stable operation. The pressure drop profiles in two beds and the solid separation rate were maintained steadily, and therefore, we could conclude that solid circulation was smooth and stable.

Experimental Measurement of Hydrodynamics and CFD Simulation of Circulating Fluidized Bed for MTO Process (MTO 공정을 위한 상온 순환유동층 장치의 수력학적 특성의 측정 및 유동모사)

  • Lim, Jonghun;Lee, Donghyun;Park, Sangsoon;Chae, Hojeong;Jeong, Soonyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.1-163.1
    • /
    • 2010
  • MTO 공정을 개발하기 위한 순환유동층 장치에서 고체순환량을 높이기 위해 고체 주입량 및 상승관 유속에 따른 수력학적 특성의 파악에 관한 연구를 수행하였다. 전체 높이 2.6m 직경 0.009m의 상승관을 가진 순환유동층 장치에 대해 고체순환량을 조절하기 위한 비기계적 밸브로 각각 Seal-pot과 L-valve가 장착된 두 장치에 대해 고체순환량 및 체류량을 측정하였다. 고체순환량 및 체류량은 두 장치에서 모두 고체의 주입량이 증가함에 따라 증가하는 모습을 나타내었으며, 상승관의 유속에 따라서는 특정한 유속의 범위 내에서 증가하다가 일정 유속 이후 감소하는 모습을 나타내었다. Seal-pot을 사용한 장치에서는 고체순환량이 최대 $87kg/m^2.s$ 가량의 값을 나타내었으나 L-valve를 사용한 장치에서는 최대 $180kg/m^2.s$를 보였다. 이러한 실험 결과를 바탕으로 하여 전산유체역학을 이용한 순환유동층의 유동해석에 관한 연구를 실시하여 실험조건의 변화에 따른 상승관 내부의 수력학적 특성을 비교하였다.

  • PDF

A Study on Gas Mixing in a Circulating Fluidized Bed (순환유동층에서 기체의 혼합특성에 관한 연구)

  • 남궁원;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.23-26
    • /
    • 1995
  • 내경 0.1 m, 높이 5.3 m 의 순환유동층 반응기를 사용하여 기체의 역혼합특성을 조사하였다. 기체의 역혼합은 동일한 기상유속일때 고체순환속도가 증가할수록 증가하였다. 희박상영역에서 일정한 고체체류량에서는 기상유속이 증가할수록 벽면에서의 하강흐름도 증가되어 기체의 역혼합은 증가되었다. Tracer 주입위치가 반응기 벽면에서 중심으로 이동할수록 빠른 기체와 고체의 흐름으로 인하여 기체의 역혼합은 상당히 감소하였다. 그리고, 희박상영역에서 core-annulus 구조를 기초로 하여 기체역혼합과 core 와 annulus 간의 물질전달계수를 예측할 수 있는 모델식을 제안하였다.

  • PDF

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process (연속식 2단 기포 유동층 공정의 운전특성)

  • Youn, Pil-Sang;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.

Effects of Operating Variables on Solid Separation Rate in Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템에서 고체분리속도에 미치는 조업변수들의 영향)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Bae, Dal-Hee;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • Effects of operating variables on solid separation rate in two-interconnected fluidized beds system for selective solid circulation have been investigated. Coarse(212~300 or $425{\sim}600{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 987 g/min. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, diameter of solid injection nozzle, particle size of coarse particles, aperture of the solid separator, and weight fraction of fines in the solid mixture increased. However, the effect of the fluidization velocity was negligible.