• Title/Summary/Keyword: 고체상 추출법

Search Result 85, Processing Time 0.027 seconds

Multicomponent pesticides analysis by automated liquid phase microextraction (자동화된 LPME(Liquid Phase Microextraction)장치를 이용한 다성분 농약분석)

  • Myung, Seung-Woon;Jung, Hong-Rae
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In this study, the optimum conditions for the LPME (liquid phase microextraction) were investigated to overcome several shortcomings of traditional liquid-liquid extraction method. The LPME, which is automatic and dynamic, was used to analyze the five pesticides (dementon-S-methyl, diazinon, parathion, fenitrothion, EPN) extracted from vegetable, and HP 6890 GC/NPD was used as an analytic instrument. It was possible to optimize the extraction condition using the automatic LPME. The optimum extraction rate was obtained at pH 3.0 and $100{\mu}g/mL$ of salt concentration and standard curve showed linearity with over $R^2=0.9921$ in the range of $0.2{\sim}10{\mu}g/g$. The relative standard deviations were 7.7%, 9.8%, 7.8%, 9.7% and 8.2% in the $5.0{\mu}g/g$ concentration of dementon-S-methyl, diazinon, parathion, fenitrothion and EPN, respectively. The acquired accuracies were satisfactory showing 12.7%, 7.8%, 10.4%, -6.7% and -0.7% for dementon-S-methyl, diazinon, parathion, fenitrothion and EPN respectively.

Determination of thyroid hormones in plasma samples by high performance liquid chromatograph/diode array detector/electrospray ionization mass spectrometer (HPLC/DAD/ESI-MS를 이용한 혈장시료 중 갑상선 호르몬 분석)

  • Kwak, Sun Young;Moon, Myeong Hee;Pyo, Heesoo
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.424-433
    • /
    • 2007
  • An analytical method for the determination of thyroid hormones in plasma samples has been studied by solid-phase extraction and high-performance liquid chromatography/diode array detector (DAD)/electrospray ionization (ESI)-mass spectrometer. Seven thyroid hormones were successfully separated by gradient elution on the reverse phase Hypersil ODS column (4.6 mm I.D., 250 mm length, particle size $5{\mu}m$) with ammonium formate buffer and acetonitrile. In addition, these compounds were confirmed by UV spectra and ESI-mass Spectra. The extraction recoveries of thyroid hormones in the plasma sample (at pH 3) were in the range of 74.5-115.7 % with solid-phase extraction by C18, followed by elution with 4 mL of methanol. The calibration curves showed good linearity with the correlation coefficients ($r^2$) varying from 0.9939 to 0.9978 and the detection limits of all analytes were obtained in the range of 20-50 ng/mL (38.1-162.8 pmol/mL). As a result, thyroxine was found in the range of 50.98-112.97 ng/mL in normal plasma samples.

A Study of Analytical Method for Trace Metal Ions in Whole Blood and Urine by Inductively Coupled Plasma-Mass Spectrometry using Solid-Liquid Extraction Technique (유도결합 플라스마-질량분석법과 고체-액체 추출법을 이용한 혈액 및 소변중 미량금속의 분석에 관한 연구)

  • Lee, Won;Hur, Young-Hoe;Park, Kyung-Su
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 1998
  • An analytical method for the simultaneous measurement of trace Cu, Sn, and Bi in blood and urine has been investigated by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Microwave oven was used for the pretreatment of blood samples using nitric acid and hydrogen peroxide in a closedvessel digestion system with 1 mL whole blood for 8 minutes. Amberlite IRC-718 resin was used as a solid phase in solid-liquid extraction technique for the removal of matrix interferences such as Na, S, P, and other polyatomic ion species. Detection limits for Cu, Sn, and Bi by this method were 0.000375 ng/mL, 0.000297 ng/mL, and 0.000174 ng/mL, respectively. Recoveries of 99.1% for Cu, 102.5% for Sn, and 98.4% for Bi were obtained for the standard spiked NIST SRM 955a blood sample. The developed method was applied for whole real blood and urine samples.

  • PDF

Quantitative Analysis of Microcystins, Cyanobacterial Toxins in Soyang Lake (소양호에서 남조류 독소, 마이크로시틴의 정량 분석)

  • Lee, Jeong Ae;Lee, So Yeong;Pyo, Dong Jin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.535-540
    • /
    • 2002
  • It is very difficult to analyze the microcystins, cyanobacterial toxins quantitatively since it exists in a trace level in lakes. In this paper, two different analytical methods were tried to analyze the microcystins, cyanobacterial toxins quantitatively in water samples collected in Soyang lake. The first method was solid phase extraction method fol-lowed by High Performance Liquid Chromatography(HPLC), and the second method was Enzyme-Linked Immu-nosorbent Assay(ELISA) using the monoclonal antibody of microcystin.

Liquid-phase Microextraction Pretreatment Techniques for Analysis of Chemical Warfare Agents and Their Degradation Byproducts in Environmental Aqueous Samples (환경샘플 내 화학작용제 및 분해물질 분석을 위한 Liquid Phase Microextraction (LPME) 전처리 기법)

  • Kim, Dongwook;Chung, Wooyoung;Kye, Youngsik
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.17-22
    • /
    • 2015
  • International interests in chemical warfare agents (CWAs) have been increased recently because of the use of sarin (GB) in Syrian civil war which caused around 1,300 casualties in 2013. After exposing to natural environments, CWAs undergo hydrolysis or photodegrade to non-toxic degradation byproducts. Generally, CWAs and their degradation byproducts are present at very low concentration (e.g. several ppb), thus pretreatment processes including separation, extraction and concentration are required prior to any analyses. Liquid-liquid extraction and solid-phase extraction (SPE) are common techniques to pretreat environmental samples. Recently, a novel pretreatment method, liquid phase miecoextraction (LPME), has been applied to CWAs analysis, which could reduce amounts of solvent used but promote analytical efficiencies. Fundamental backgrounds of LPME and its application to CWAs analysis were reviewed.

Analysis of residual neomycin in honey by LC-MS/MS (LC-MS/MS에 의한 벌꿀 중 잔류 네오마이신의 분석)

  • Shim, Young-Eun;Jeong, Ji-Yoon;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • An effective and specific procedure for confirmation of neomycin, aminoglycoside antibiotic in honey was developed and validated. Honey was adjusted to pH 2 with 0.1M HCl and applied to weak cation-exchange SPE cartridge. Neomycin was eluted with basified methanol. Following separation by ion-pairing liquid chromatography, neomycin was analysed with positive electrospray ionization and MRM mode. Quantification was linear over the range of $5.0{\sim}250.0{\mu}g/kg$ ($r^2$ >0.9951). The precision (R.S.D.) and accuracy (as a bias) of quality control samples in honey ranged 11.5~18.7% and 10.9~20.9%, respectively. Established method can be applied to analysis of neomycin in honey.

Volatile Component Analysis of Commercial Japanese Distilled Liquors (Shochu) by Headspace Solid-Phase Microextraction (헤드스페이스 고체상미량추출(Solid-Phase Microextraction)을 이용한 시판 일본소주의 휘발성 향기성분 분석)

  • Shin, Kwang-Jin;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.567-573
    • /
    • 2015
  • In this study, volatile compounds in nine commercial Japanese distilled liquors (Shochu) were isolated by headspace solid-phase microexrraction (SPME) and analyzed by gas chromatography (GC) and GC-mass spectrometry (MS). A total of 76 volatile components, including 48 esters, 13 alcohols, and 15 miscellaneous components, were identified. Esters and alcohols constituted the largest groups of quantified volatiles. Differences in volatile components among the distilled liquors and possible sample grouping were examined by applying principal component analyses to the GC-MS data sets. The first and second principal components explained 77.92% of the total variation across the samples. The samples using barley koji showed higher overall concentrations of total volatile components. Additionally, the principal component analysis did not reveal any sample grouping based on the raw material used.

The Screening and Pattern Comparison of Organic Acids in 3 Kinds of Medicinal Herbal Extracts (3가지 약용 허브 추출물에 함유된 유기산 검색 및 조성 비교)

  • Chung, Ha-Yull;Jung, Do-Hyun;Park, Young-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.997-1001
    • /
    • 2000
  • The organic acids in 3 kinds of medicinal herbal extracts were screened and compared each other according to their organic acid contents by an efficient gas chromatographic method. It involves solid-phase extraction of organic acids using Chromosorb P with subsequent conversion to stable tert-butyldimethysilyl derivatives for the direct analysis by capillary column gas chromatography and gas chromatography-mass spectrometry. Total of 24 organic acids were reproducibly identified from 3 kinds of herbal extracts. When the GC profiles were simplified to their retention index spectra, characteristic patterns were obtained for each herb sample. As expected, three kinds of herbal extracts showed three distinct patterns.

  • PDF

Determination of Domoic Acid in Seafood Matrices using HPLC-UV with Solid Phase Extraction Cleanup (고체상 추출 전처리 및 HPLC-UV를 이용한 수산물 중 domoic acid의 분석)

  • Si Eun Kim;Sang Yoo Lee;Ji Eun Park;Hyunjin Jung;Hyang Sook Chun
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.297-304
    • /
    • 2023
  • Domoic acid (DA), a neurotoxin produced naturally by diatoms, is responsible for incidents of amnesic shellfish poisoning. In this study, a modified analytical method was established to determine domoic acid in seafood using solid phase extraction cleanup and optimizing the amount of sample and extraction solvent to reduce interference effects. The modified method using high-performance liquid chromatography with ultraviolet detection was validated using three seafood matrices (mussel, red snow crab, and anchovy) at three concentrations (1, 2, and 4 mg/kg) and compared to the Food Code method. Compared to the Food Code method, the modified method showed better performance in terms of linearity (R2>0.999), detection limit (0.02-0.03 mg/kg), quantification limit (0.05-0.09 mg/kg), intra-/inter-day accuracy (86.2-100.4%), and intra-/inter-day precision (0.2-4.0%). Furthermore, the method was successfully applied for the analysis of 87 seafood samples marketed in Korea, and DA was detected at a low concentration of 140 ㎍/kg in one anchovy sample. These results suggest that the modified method can be used for routine determination of DA in seafood.

Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds (Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교)

  • Yang, Ji-Yeon;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.695-701
    • /
    • 2005
  • Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.