• Title/Summary/Keyword: 고체로켓 모터

Search Result 92, Processing Time 0.019 seconds

The Effect of Swirl Flow on Solid Fuel Regression Rate of Hybrid Rocket (선회류 하이브리드 로켓의 고체 연료 후퇴율에 관한 연구)

  • Park Jong-Won;Park Joo-Hyuk;Lee Choong-Won;Yoon Myung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.311-317
    • /
    • 2005
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, swirl flow hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured in low flow rate of oxidizer. Several problems and solutions of operating hybrid rocket was presented.

  • PDF

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

Flow Rate Control of Gaseous Oxygen for a $HTPB/GO_2$ Hybrid Rocket ($HTPB/GO_2$ 하이브리드 로켓의 산화제 유량제어)

  • Oh Hwa-Young;Moon Sung-Hwan;Huh Hwanil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.251-254
    • /
    • 2004
  • Hybrid rockets have many advantages over solid and liquid rockets. Hybrid rockets put forth high $I_{sp}$ like liquid rockets in spite of simple structure and low cost. As oxidizer flow rate is increased, thrust of hybrid rocket is increased accordingly. In this study, lab-scale hybrid rocket is designed, fabricated and tested. This system consists of lab-scale hybrid rocket motor, ignition system, flow system and data aquisition system. In order to control oxidizer flow rate, we construct flow rate control system by using needle valve and stepping motor.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.521-528
    • /
    • 2017
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, which is used for solid rocket nozzle liner or insulator, was conducted. 1-D Finite Difference Method for the analysis of silica/phenolic during the firing of solid rocket motor was used to calculate the heat conduction considering the surface ablation and the thermal decomposition. The boundary condition at the nozzle wall took into account the convective heat transfer, which was obtained by integration equation. The numerical results of the surface ablation and char depth were compared with the results of test motor that is TPEM-10. It was found that the result of calculation is favorably agreed with the thermal response of test motor.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.76-84
    • /
    • 2018
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

LES Investigation of Pressure Oscillation in Solid Rocket Motor by an Inhibitor (고체모터의 인히비터에 의한 압력 진동 특성 LES 연구)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • The pressure oscillation induced by inhibitor in a solid rocket motor has been investigated by 3D large eddy simulation(LES) and proper orthogonal decomposition(POD). The vortex generation and breakdown at inhibitor are periodically observed between the inhibitor and the nozzle by flow-acoustic coupling mechanism. The excitation of pressure oscillation occurs as the flow impinges on the submerged nozzle head which recirculate in the cavity in rear dome of the motor chamber. The vortex generation frequency is closely related with the shedding frequencies of the detached vorticities at the inhibiter, which fairly compared with the experimental data.

Effect of Combustors and Propellant Parameters on the L* Instability of Solid Rocket Motors (연소실 및 추진제 변화에 따른 고체로켓 모터의 L* 불안정에 관한 연구)

  • Lee, Donghee;Ryu, Seunghyun;Joo, Seongmin;Kim, Junseong;Moon, Heejang;Sung, Honggye;Yang, Juneseo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.30-35
    • /
    • 2015
  • In this paper, a theoretical study of low frequency non acoustic instability, the $L^*$ instability, of a solid rocket motor is investigated. The $L^*$ stability criterion is determined by analysing the $L^*$ stability curves of two very distinct propellants for five different geometrical combustors. The $L^*$ instability of two extreme fuels showed totally different behavior in terms of operating pressure of the combustor. A parametric study on the stability for different chamber volume and different throat area keeping constant $L^*$ is conducted and analyzed. It was found that one of the main parameters, the non-dimensional critical characteristic time, requires an enough margin from the critical $L^*$ stability curve.

A Study on Vibration Phenomena occurred in Ground Firing Test of Solid Rocket Motors (고체추진 로켓모터의 지상연소시험시 발생되는 진동현상에 관한 연구)

  • 김준엽;장성조;김도영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2280-2285
    • /
    • 1993
  • Many items, as internal pressure, thrust, temperature, strain, etc. are measured in Ground Firing Test (GFT) of rocket motors. But these items are influenced by various phenomena occurred during propellant combustion. In this study, natural frequencies of motor itself and system(motor+loadcell) on Stand were measured. Also motor responses were measured during burning and analyzed so that the vibration characteristics occurred during GFT and the causes and characteristics of vibration signal appearing on thrust curve were identified.

A Development of Insensitive Munitions Technologies for Tactical Rocket Motors (고체추진기관 둔감화 기술 개발동향)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Hwang, Kab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.213-216
    • /
    • 2008
  • U. S. and NATO allies have recently increased their emphasis on reducing the hazards of tactical munitions that contain energetic materials and actively started many investigations on Insensitive munitions(IM) of missile propulsion. All subcomponents of rocket motor should be properly designed and understood to increase IM properties. Insensitive propellant, motor case, ignitor and mitigation devices are important components of IM technologies of rocket motors.

  • PDF

Study on the Combustion of the Hybrid Rocket (하이브리드 로켓의 연소현상 연구)

  • ;S. Krishnan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.126-130
    • /
    • 2003
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. In this study, lab-scale hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Thrust was calculated with pressure of the combustion chamber and the regression rate was measured in low flow rate of oxidizer. Several problems and solutions of operating hybrid rocket was presented.

  • PDF