• Title/Summary/Keyword: 고차 시간-주파수

Search Result 24, Processing Time 0.017 seconds

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.

Relationship between Transverse-Mode Behavior and Dynamic Characteristics in Multi-Mode VCSELs (다중모드 VCSEL의 모드 특성과 동특성 사이의 관계)

  • Kim Bong-Seok;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.19-26
    • /
    • 2005
  • We have studied the relationship between static mode behavior and dynamic characteristics of multiple transverse-mode VCSELs by measuring the modal L-I and I-V characteristics. Dependence of the resonance frequencies of RIN (relative intensity noise) spectra on the injection current can be understood by modal L-I characteristics and mode-coupling effects. Each transverse mode behaves as an independent diode laser with the different threshold current in large active-area VCSELs, and the multiple-step turn-on is observed when step-current input is applied. This multiple-step turn-on is a result of different turn-on delay times of the transverse modes. Since the multiple-step turn-on increases the rise-time significantly, the wide active-area VCSELs are not suitable for high-speed optical transmitters unless the input current is adjusted for single transverse-mode operation.

A Study on the Underwater Channel Model based on a High-Order Finite Difference Method using GPUs (그래픽 프로세서를 이용한 고차 유한 차분식 기반 수중채널모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Ha, Wansoo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • As unmanned underwater systems have recently emerged, a high-speed underwater channel modeling technique, which is one of the most important techniques in the system, has received a lot of attention. In this paper, we proposed a high-speed sound propagation model and verified the applicability through quantitative performance analyses. We used a high-order finite difference method (FDM) for wave propagation modeling in the water, and a domain decomposition method was adopted using multiple general-purpose graphics processing units (GPUs) to increase the calculation efficiency. We compared the results of the model we proposed with the analytic solution in the half-infinite media and results of the Virtual Timeseries Experiment (VirTEX) model, which is based on the ray method. Finally, we analyzed the performance of the model quantitatively using numerical examples. Through quantitative analyses of the improvement in computational performance, we confirmed that the computational speed increases linearly as the number of GPUs increases. The computation times are increased by 2 times and 8 times, respectively, when the domain size of computation and the maximum frequency are doubled. We expect that the proposed high-speed underwater channel modeling technique is able to contribute to the enhancement of national defense as an underwater communication channel model and analysis tool to develop the underwater communication technique for the unmanned underwater system.

A Phase Noise Reduction Scheme for OFDM Systems (OFDM 시스템의 위상잡음 감쇄기법)

  • Park Kyung-won;Jeon Won-gi;Paik Jong-ho;Yang Won-young;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.465-473
    • /
    • 2005
  • In this paper, the reduction scheme of Interchannel Interference(ICI) caused by the phase noise in Orthogonal Frequency Division Multiplexing(OFDM) systems for archiving high data rates is proposed. The performance of conventional common phase error(CPE) compensation method is degraded by the phase noise with wide 3dB bandwidth in OFDM systems width a higher-order constellation. After estimating dominant ICI coefficients using pilot subcarriers and data subcarriers adjacent to pilot subcarriers, the proposed scheme compensates OFDM signals distorted by the phase noise using estimated coefficients in the time or frequency domain. Also, in order to determine the length of dominant ICI coefficients effectively, the estimation method of the 3dB bandwidth of the phase noise is proposed. The proposed phase noise reduction method is shown to improve the Bit Error Ratio(BER) performance compared with the conventional CPE compensation.