• Title/Summary/Keyword: 고주파 정보 추출

Search Result 93, Processing Time 0.02 seconds

Infrared Image Sharpness Enhancement Method Using Super-resolution Based on Adaptive Dynamic Range Coding and Fusion with Visible Image (적외선 영상 선명도 개선을 위한 ADRC 기반 초고해상도 기법 및 가시광 영상과의 융합 기법)

  • Kim, Yong Jun;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • In general, infrared images have less sharpness and image details than visible images. So, the prior image upscaling methods are not effective in the infrared images. In order to solve this problem, this paper proposes an algorithm which initially up-scales an input infrared (IR) image by using adaptive dynamic range encoding (ADRC)-based super-resolution (SR) method, and then fuses the result with the corresponding visible images. The proposed algorithm consists of a up-scaling phase and a fusion phase. First, an input IR image is up-scaled by the proposed ADRC-based SR algorithm. In the dictionary learning stage of this up-scaling phase, so-called 'pre-emphasis' processing is applied to training-purpose high-resolution images, hence better sharpness is achieved. In the following fusion phase, high-frequency information is extracted from the visible image corresponding to the IR image, and it is adaptively weighted according to the complexity of the IR image. Finally, a up-scaled IR image is obtained by adding the processed high-frequency information to the up-scaled IR image. The experimental results show than the proposed algorithm provides better results than the state-of-the-art SR, i.e., anchored neighborhood regression (A+) algorithm. For example, in terms of just noticeable blur (JNB), the proposed algorithm shows higher value by 0.2184 than the A+. Also, the proposed algorithm outperforms the previous works even in terms of subjective visual quality.

Edge-based spatial descriptor for content-based Image retrieval (내용 기반 영상 검색을 위한 에지 기반의 공간 기술자)

  • Kim, Nac-Woo;Kim, Tae-Yong;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.1-10
    • /
    • 2005
  • Content-based image retrieval systems are being actively investigated owing to their ability to retrieve images based on the actual visual content rather than by manually associated textual descriptions. In this paper, we propose a novel approach for image retrieval based on edge structural features using edge correlogram and color coherence vector. After color vector angle is applied in the pre-processing stage, an image is divided into two image parts (high frequency image and low frequency image). In low frequency image, the global color distribution of smooth pixels is extracted by color coherence vector, thereby incorporating spatial information into the proposed color descriptor. Meanwhile, in high frequency image, the distribution of the gray pairs at an edge is extracted by edge correlogram. Since the proposed algorithm includes the spatial and edge information between colors, it can robustly reduce the effect of the significant change in appearance and shape in image analysis. The proposed method provides a simple and flexible description for the image with complex scene in terms of structural features of the image contents. Experimental evidence suggests that our algorithm outperforms the recently histogram refinement methods for image indexing and retrieval. To index the multidimensional feature vectors, we use R*-tree structure.

Performance Improvement of Speaker Recognition Using Enhanced Feature Extraction in Glottal Flow Signals and Multiple Feature Parameter Combination (Glottal flow 신호에서의 향상된 특징추출 및 다중 특징파라미터 결합을 통한 화자인식 성능 향상)

  • Kang, Jihoon;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2792-2799
    • /
    • 2015
  • In this paper, we utilize source mel-frequency cepstral coefficients (SMFCCs), skewness, and kurtosis extracted in glottal flow signals to improve speaker recognition performance. Generally, because the high band magnitude response of glottal flow signals is somewhat flat, the SMFCCs are extracted using the response below the predefined cutoff frequency. The extracted SMFCC, skewness, and kurtosis are concatenated with conventional feature parameters. Then, dimensional reduction by the principal component analysis (PCA) and the linear discriminat analysis (LDA) is followed to compare performances with conventional systems under equivalent conditions. The proposed recognition system outperformed the conventional system for large scale speaker recognition experiments. Especially, the performance improvement was more noticeable for small Gaussan mixtures.

Single Image Super Resolution using sub-Edge Extraction based on Hierarchical Structure (계층적 보조 경계 추출을 이용한 단일 영상의 초해상도 기법)

  • Hyun Ho, Han
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • In this paper, we proposed a method using sub-edge information extracted through a hierarchical structure in the process of generating super resolution based on a single image. In order to improve the quality of super resolution, it is necessary to clearly distinguish the shape of each area while clearly expressing the boundary area in the image. The proposed method assists edge information of the image in deep learning based super resolution method to create an improved super resolution result while maintaining the structural shape of the boundary region, which is an important factor determining the quality in the super resolution process. In addition to the group convolution structure for performing deep learning based super resolution, a separate hierarchical edge accumulation extraction process based on high-frequency band information for sub-edge extraction is proposed, and a method of using it as an auxiliary feature is proposed. Experimental results showed about 1% performance improvement in PSNR and SSIM compared to the existing super resolution.

An Automatic Region-of-Interest Extraction based on Wavelet on Low DOF Image (피사계 심도가 낯은 이미지에서 웨이블릿 기반의 자동 관심 영역 추출)

  • Park, Sun-Hwa;Kang, Ki-Jun;Seo, Yeong-Geon;Lee, Bu-Kweon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.215-218
    • /
    • 2009
  • 본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽 탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$ 또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하여 접근하며, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 기존 방법들의 문제점 이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산도를 상당히 개선시킬 수 있었다. 또한 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능 하였다.

  • PDF

A Study on the Edge Detection for Road Information based on the IKONOS (IKONOS 영상에서 도로정보추출을 위한 경계검출에 관한 연구)

  • Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.593-598
    • /
    • 2006
  • High-resolution satellite imagery has many benefits, compared to aerial photo in the wide area as well as multi-spectral character. So, it can be used well for constructing GIS data when making digital map. This study analysed the possibilities that road information derived automatically from IKONOS can be used for making ITS system or updating digital map of the urban areas where change frequently and producing satellite image map. In this study, Sobel was applied for road edge dectection after low pass filtering. As the results, it's possible for low pass filtering and high pass filtering to be used as the basic data for ITS construction when extracting edge roads and constructs according to the characteristic of high-resolution satellite imagery.

Hardware Implementation for Stabilization of Detected Face Area (검출된 얼굴 영역 안정화를 위한 하드웨어 구현)

  • Cho, Ho-Sang;Jang, Kyoung-Hoon;Kang, Hyun-Jung;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • This paper presents a hardware-implemented face regions stabilization algorithm that stabilizes facial regions using the locations and sizes of human faces found by a face detection system. Face detection algorithms extract facial features or patterns determining the presence of a face from a video source and detect faces via a classifier trained on example faces. But face detection results has big variations in the detected locations and sizes of faces by slight shaking. To address this problem, the high frequency reduce filter that reduces variations in the detected face regions by taking into account the face range information between the current and previous video frames are implemented in addition to center distance comparison and zooming operations.

A Revised Dynamic ROI Coding Method Based On The Automatic ROI Extraction For Low Depth-of-Field JPEG2000 Images (낮은 피사계 심도 JPEG2000 이미지를 위한 자동 관심영역 추출기반의 개선된 동적 관심영역 코딩 방법)

  • Park, Jae-Heung;Kim, Hyun-Joo;Shim, Jong-Chae;Yoo, Chang-Yeul;Seo, Yeong-Geon;Kang, Ki-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, we propose a revised dynamic ROI (Region-of-Interest) coding method in which the focused ROI is automatically extracted without help from users during the recovery process of low DOF (Depth-of-Field) JPEG2000 image. The proposed method creates edge mask information using high frequency sub-band data on a specific level in DWT (Discrete Wavelet Transform), and then identifies the edge code block for a high-speed ROI extraction. The algorithm scans the edge mask data in four directions by the unit of code block and identifies the edge code block simply and fastly using a edge threshold. As the results of experimentation applying for Implicit method, the proposed method showed the superiority in the side of speed and quality comparing to the existing methods.

The CMOS RF model parameter for high frequency communication circuit design (고주파통신회로 설계를 위한 CMOS RF 모델 파라미터)

  • 여지환
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.3
    • /
    • pp.123-127
    • /
    • 2001
  • The prediction method of the parameter C/sub gs/ of CMOS transistor is proposed by calculating the mobil charge in inversion layer of COMS transistor. This parameter C/sub gs/ decided on the cutoff frequency in MOS transistor in RF range and coupled input and output. This parameter C/sub gs/ in RF range is very important parameter in small signal circuit model. This proposed method is contributed to developing software of extracting parameter value in equivalent circuit model. The method provide the important information to construct a RF nonlinear model for multifinger gate MOSFET. This method will be very valuable to develop a large signal MOSFET model for nonlinear RF IC design.

  • PDF

Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 수채화 효과 생성 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.25-33
    • /
    • 2010
  • We propose a retouching method that converts a general photography to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform DoG(Difference of Gradient) edge extraction and mean shift segmentation respectively from the bilateral filtered image. The DoG edge extraction is performed using luminance component of the image whose RGB color space is transformed into CIELAB space. Experimental result shows that our method can be applied to various types of image and bring better result, especially against the photo taken in daylight.