• 제목/요약/키워드: 고조파 공진

검색결과 185건 처리시간 0.019초

비접촉 동력 전달을 위한 마그네트 기어 기반 감속기의 속도 제어에 관한 연구 (Speed Control Of The Magnet Gear-Based Speed Reducer For Non-contact Power Transmission)

  • 정광석
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.380-388
    • /
    • 2016
  • 마그네트 기어를 이용하면 기계적인 접촉없이 동력을 전달할 수 있다. 마그네트 기어 기반 감속 시스템에서 종동축은 구동축으로부터 분리되어있기 때문에 시스템은 제한된 공극 강성으로 부하 변화에 대응해야하는 2관성 공진 시스템이다. 종동축 즉, 저속측은 구동축 인가 토크만으로 제어되고 갑작스런 외란에 따라 일반적인 기계식 기어 시스템과 달리 과도한 진동이나 슬립이 발생할 수 있다. 따라서 저속측에 인가되는 부하 등의 외란은 실시간으로 측정되거나 추정되어야 한다. 본 논문에서는 고조파 조절기 일체형 마그네트 기어를 이용한 감속 시스템의 저속측 속도 제어를 위한 전상태 되먹임 제어기를 제안하고 이를 전산 모의 시험과 실험을 통해 검증하였다. 저속측 부하를 추정하기 위해 새로운 상태변수를 도입하여 관측기를 설계하였으며 이를 기반으로 하는 전상태 제어기를 통한 외란에 대한 강건성은 2자유도 PI 속도 제어기와 비교하였다. 상대적으로 짧은 시간안에 극의 슬립이 보정되는 것을 확인하였으며 추정된 변수는 실제 측정 결과와 유사한 경향을 나타내었다. 이러한 결과는 마그네트 기어 감속기의 서보 시스템으로의 응용 가능성을 담보해주는 결과인 것으로 판단된다.

파장가변 티타늄 사파이어 레이저로 펌핑하는 연속발진 Nd:YVO4/KTP 레이저의 출력 특성 (Output power characteristics of a CW Nd:YVO4/KTP laser pumped by a tunable Ti:Sapphire laser)

  • 추한태;안범수;김규욱;이치원
    • 한국광학회지
    • /
    • 제13권2호
    • /
    • pp.140-145
    • /
    • 2002
  • 선폭 0.2nm인 파장가변 티타늄 사파이어 레이저를 펌핑 레이저로 사용하여 펌핑 레이저의 5편광(E┴$\pi$)과 P-편광(E∥$\pi$) 그리고 파장 변화 등에 따라 두께 1 mm인 Nd:YVO$_4$결정의 흡수율 및 연속 발진 Nd:YVO$_4$/KTP 레이저의 출력 특성을 측정하였다. 그 결과 S-편광 및 P-편광 펌핑 레이저의 파장에 따른 Nd:YVO$_4$결정의 최대 흡수율은 각각 809.4 nm일 때 82% 및 808.8 nm일 때 98%로 측정되었으며, 기본파인 Nd:YVO$_4$레이저(1064 nm) 출력의 기울기 효율은 각각 43% 및 52%로 측정되어 1000 mW 출력의 P-편광 펌핑 레이저에 대하여 최대 516 mW의 Nd:YVO$_4$레이저 출력을 얻을 수 있었다. 또한 P-편광 펌핑 레이저에 대한 내부공진기 진동수 배가된 제2고조파 Nd:YVO$_4$/KTP 녹색 레이저(532 nm)출력 기울기 효율은 23%로 측정되었으며 1000 mW 펌핑 출력에 대하여 빔질 파라메터 M$^2$=1.42인 최대 205 mW의 출력을 얻을 수 있었다.

대역폭 특성이 개선된 평행 결합 선로 필터의 소형화 기법 (Bandwidth Enhanced Miniaturization Method of Parallel Coupled-Line Filter)

  • 명성식;육종관
    • 한국전자파학회논문지
    • /
    • 제18권2호
    • /
    • pp.126-135
    • /
    • 2007
  • 본 논문은 기존에 제시된 집중 소자 캐패시터와 접지를 이용한 평행 결합 선로 필터의 소형화 기법이 갖는 대역폭 감소 문제를 해결하는 기법을 제안하였다. 평행 결합 선로 필터는 그 설계 및 제작이 쉬워 RF(Radio Frequency) 필터로 많은 응용이 이루어지고 있다. 이러한 평행 결합 선로 필터에 대하여 기존에 제시된 집중 소자 캐패시터와 접지를 이용한 소형화 기법은 적은 수의 캐패시터만을 이용하여 필터를 소형화할 수 있으며, 더불어 고조파 특성의 개선 및 스컷 특성의 개선 등의 부가적인 장점이 있는 기법이나 제시된 기법을 이용하여 필터를 소형화할 경우 대역폭이 감소한다는 문제점을 가지고 있었다. 본 논문에서는 이러한 대역폭의 감소를 필터를 구성하는 각 단의 평행 결합 선로의 군지연 변화를 계산하여 대역폭의 감소의 정도를 유추하고, 역으로 대역폭이 감소하는 만큼 사전에 필터의 대역폭을 크게 설계함으로 소형화로 인한 대역폭의 감소를 해결하는 방법을 제시하였다. 제안된 기법에 대한 검증을 위해 테프론(${\varepsilon}_r=2.2$) 기판을 사용하여 무선 랜 대역인 5.2 GHz대역의 FBW(Fractional Band Width) 10%의 필터를, 제안한 기법을 적용하여 공진기의 길이를 ${\lambda}/4$로 줄인 헤어핀 형태로 제작 및 측정하여 제안된 기법의 타당성을 확인하였다.

pHEMT 공정을 이용한 저손실, 고전력 4중 대역용 SP6T 스위치 칩의 설계 및 제작 (Design and Fabrication of Low Loss, High Power SP6T Switch Chips for Quad-Band Applications Using pHEMT Process)

  • 권태민;박용민;김동욱
    • 한국전자파학회논문지
    • /
    • 제22권6호
    • /
    • pp.584-597
    • /
    • 2011
  • 본 논문에서는 WIN Semiconductors사의 0.5 ${\mu}m$ PHEMT 공정을 이용하여 GSM/EGSM/DCS/PCS 4중 대역을 위한 저손실, 고전력의 RF SP6T 스위치 칩을 설계, 제작 및 측정하였다. 스위치 특성을 개선시킬 수 있는 최적의 구조를 위해서 series와 series-shunt 구조를 혼용하였고, 칩 크기를 줄이기 위해서 수신단에 공통 트랜지스터 구조를 사용하였다. 또한, 시스템에 사용되는 ON, OFF 상태의 입력 전력을 고려하여 트랜지스터의 게이트 크기와 스택(stack) 수를 결정하였다. 마지막으로 피드 포워드(feed forward) 캐패시터, shunt 캐패시터 그리고 shunt 트랜지스터의 기생 인덕턴스 공진 기법을 적용하여 격리도 및 전력 특성을 개선하였다. 제작된 스위치 칩의 크기는 $1.2{\times}1.5\;mm^2$이며, S 파라미터 측정 결과 삽입 손실은 0.5~1.2 dB, 격리도는 28~36 dB를 보였다. 전력 특성으로는 4 W의 입력 전력에 대해서도 삽입 손실 및 격리도의 특성 변화가 없었으며, 75 dBc 이상의 2차 및 3차 고조파 억제 특성이 확보되었다.

저 자기장 조골세포 재형성 시스템용 RF 코일 설계 (Design of RF Coil for Low Magnetic-Field Osteoblast Reformation System)

  • 문성혁;조춘식;김영진
    • 한국전자파학회논문지
    • /
    • 제29권11호
    • /
    • pp.821-827
    • /
    • 2018
  • 골다공증을 치료하기 위하여 조골세포의 재형성 증가를 위해 사용되는 장치에서는 뼈의 외부에서 자기장을 인가하게 되면 뼈에 포함된 무기질이 일정한 방향으로 정렬되며, 세차운동을 하게 된다. 이러한 상황에서 RF 코일을 이용하여 90도 RF 펄스를 인가하면 무기질의 양성자가 여기 상태에 이르게 되며, 뼈 속에서의 조골세포의 침착에 촉진하는 인의 활성도가 증가하여 뼈의 재형성이 증가하게 된다. 이 때 세차 운동 주파수의 고조파에 해당하는 신호를 RF 코일에서 90도 RF 펄스로 발생시키는 RF 코일의 크기를 소형화하면 조골세포 재형성 시스템의 전체 크기를 획기적으로 감소시킬 수 있다. 본 연구에서는 조골세포 재형성 시스템에 사용될 수 있는 RF 코일의 소형화를 위한 방법론을 제시하며, 설계 후 측정을 통하여 검증한다. 본 연구에서 구현한 RF 코일의 커패시터는 25 pF, 인덕터는 약 100 nH, 공진주파수는 대략 96 MHz이며, 제작된 RF 코일의 end 링의 반지름은 18 cm, 다리 총 길이는 $2{\times}11.6cm$이다.