에지 검출은 여러 분야에서 다양한 용도로 적용되는 영상 처리 기술 중 하나이고, 대부분의 응용에서 필수적인 전처리 과정으로 사용된다. 기존의 에지 검출 방법들에는 고정 가중치 마스크를 이용한 Sobel, Prewitt, Roberts, LoG등이 있다. 기존의 에지 검출 방법들은 고정된 가중치 마스크를 영상에 적용하기 때문에 다소 에지 검출 특성이 미흡하게 나타난다. 따라서 본 연구에서는 이러한 문제점을 해결하기 위해, 중심 화소를 기준으로 한 십자 마스크와 중심화소의 주변 화소를 중심으로 상, 하, 좌, 우에 마스크를 적용하여 에지를 검출하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 성능을 평가하기 위해, 기존의 Sobel, Roberts, Prewitt, LoG 에지 검출 방법들과 비교하였다.
디지털 정보화 시대에서 영상은 여러 매체에서 필수적으로 이용되며, 에지는 영상에서 물체의 크기, 위치, 방향 등을 포함하는 중요한 특징 정보이다. 이러한 에지를 검출하기 위한 여러 연구들이 국내외에서 진행되고 있다. 기존의 에지 검출 방법들에는 고정된 가중치 값을 적용하는 Sobel, Prewitt, Roberts, Laplacian, LoG 등이 있다. 이와 같은 기존의 에지 검출 방법들은 고정된 가중치 마스크를 영상에 적용하기 때문에 에지 검출 특성이 다소 미흡하게 나타난다. 따라서 본 연구에서는 이러한 문제점을 보완하기 위해, 모폴로지에서 bottom-hat 변환과 열기 연산을 이용하여 영상을 개선하고 마스크 기반의 기울기를 구한 후 에지를 구하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 성능을 평가하기 위해, 기존의 Sobel, Roberts, Prewitt, Laplacian, LoG 에지 검출 방법들과 비교하여 시각적 영상을 나타내었고, 각각의 영상을 기준으로 하는 MSE 값을 구하여 유사성을 비교하였다.
자기구성 지도는 주어진 입력에 대해 올바른 출력 값이 제공되지 않는 비교사 방식으로 학습된다. 또한, 반응하는 순서나 위치를 통해 위상이 보존(topology preserving)되는 특성을 가지고 있어 많은 분야에 응용되고 있다. 그러나, 자기 구성지도는 학습이 되기 전에 위상을 미리 고정시켜야 하기 때문에 실제 문제에 적용하기 어렵다는 단점을 가지고 있다. 구조 적응형 자기구성 지도는 자기구성 지도의 고정된 구조 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 또한 중요한 문제이다. 이 논문에서는 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도보다 다소 높은 인식률을 보였고, 숫자 별 인식률 편차를 줄일 수 있었다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.
MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 몇 가지 이점이 있어 다양한 문제영역에서 사용되고 있다 그러나 MLP의 학습에 일반적으로 사용되는 EBP(error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 실시간 처리를 요구하는 문제나 대규모 데이터 및 MLP 구조로 인해 학습시간이 상당히 긴 문제에서 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 MLP의 내부변수를 갱신하는 은라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 EBP 알고리즘에서는 내부 가중치 갱신시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률을 고정함으로써 온라인 방식에서 패턴별 갱신의 특성을 완전히 활용하지 못하는 비효율성이 발생한다. 또한, 학습도중 패턴군이 학습된 패턴과 그렇지 못한 패턴으로 나뉘고 이 가운데 학습된 패턴은 학습을 위한 계산에 포함될 필요가 없음에도 불구하고, 기존의 온라인 EBP에서는 에폭에 할당된 모든 패턴을 일률적으로 계산에 포함시킨다. 이 문제에 대해 본 논문에서는 학습이 진행됨에 따라 패턴마다 적절한 학습률을 적용하고 필요한 패턴만을 학습에 반영하는 패턴별 가변학습률 및 학습생략(COIL) 방댑을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.
본 논문은 칼라 필터 배열(color filter array : CFA) 영상에서 채널 간 상관관계를 이용한 새로운 에지 방향 컬러 보간 방법을 제시하였다. 고정 채널 간 컬러 차 가정에 따라 휘도와 색차간의 차가 큰 경우 에지 영역이라 판단한다. 에지 방향 판별을 정확히 하기 위해 수평, 수직 방향으로 컬러 차 영상을 구하고, 구한 영상에서 변화량을 계산하여 에지 방향 판별 기준으로 사용한다. 에지 판별 기준을 사용하여, 에지 방향에 따라 컬러 보간을 수행한다. 평탄 영역은 이웃 화소와의 유사성에 따라 가중치를 다르게 줘서, 이웃 화소의 가중치 합으로 구한다 실험 결과는 제안하는 알고리즘이 기존 알고리즘 보다 우수함을 보여준다.
시각암호는 기존의 비밀 분산법이 비밀을 분산/복호시의 방대한 연산량을 수반하는 것과는 달리 인간의 시각에 의해 직접 복호되기 때문에 복잡한 연산이 필요없는 방식이다. 본 논문에서는 중첩하는 슬라이드의 매수에 따라 복수의 비밀화상이 복원되는 시각암호에 대해 알아보고, 그 안전성을 검증한다. 분산하고자 하는 비밀화상의 수가 증가함에 따라 크기가 기하 급수적으로 커지기 때문에 복원화성의 인식이 어렵게 된다. 따라서 고정 가중치 부호의 해밍 거리를 조정하여 줄임으로서 복원화상의 해상도를 개선하는 방법을 제안한다.
객체를 추적하는 기술은 컴퓨터 비전 분야에서 활발히 연구되고 있는 분야 중 하나이다. 그 중 고정된 단일 카메라를 이용한 객체 추적 기술은 비디오 감시(Surveillance) 등에서 활용되고 있다. 고정된 카메라 환경에서 객체를 추적하는 방법 중 배경 모델링(Background Modeling)을 이용한 방법은 간단하면서도 널리 사용되는 방법 중 하나이다. 객체의 움직임이나 특징을 분석하여 배경 모델을 생성한 후 배경 정보를 이용하여 전경을 분리하면 쉽게 객체를 추출할 수 있다. 그러나 객체의 움직임이 적은 경우 해당 영역에서의 배경 모델은 정확하게 생성될 수 없다. 배경 모델을 학습하는 동안 객체가 충분이 움직이면 이런 문제를 해결할 수 있으나 객체가 움직이기 전까지는 오류가 지속된다. 이런 문제를 해결하기 위해 본 논문에서는 인페인팅(Inpainting)을 이용하여 움직임이 적은 영역을 보정하여 정확한 배경 모델을 생성하는 방법을 제안한다. 배경 모델을 생성한 후 객체로 식별할 수 있는 후보 영역을 식별한다. 선정된 영역들 중 사용자가 객체로 판단되는 영역을 선택하여 해당 영역에 대해 인페인팅으로 화소값 및 가중치들을 보정한다. 보정된 영상으로 배경 모델링을 수행하면 움직임이 적은 영역에 대해서도 효과적으로 배경 모델을 생성 할 수 있다.
최근 감정 분류 분야에서 딥러닝 인코더 기반의 접근 방법이 활발히 적용되고 있다. 딥러닝 인코더 기반의 접근 방법은 가변 길이 문장을 고정 길이 문서 벡터로 압축하여 표현한다. 하지만 딥러닝 인코더에 흔히 사용되는 구조인 장 단기 기억망(Long Short-Term Memory network) 딥러닝 인코더는 문서가 길어지는 경우, 문서 벡터 표현의 품질이 저하된다고 알려져 있다. 본 논문에서는 효과적인 감정 문서의 분류를 위해, 장 단기 기억망의 출력을 중요도에 따라 가중합하여 문서 벡터 표현을 생성하는 주목방법 기반의 딥러닝 인코더를 사용하는 것을 제안한다. 또한, 주목 방법 기반의 딥러닝 인코더를 문서의 감정 분류 영역에 맞게 수정하는 방법을 제안한다. 제안하는 방법은 윈도우 주목 방법(Window Attention Method)을 적용한 단계와 주목 가중치 재조정(Weight Adjustment) 단계로 구성된다. 윈도우 주목 방법은 한 단어 이상으로 구성된 감정 자질을 효과적으로 인식하기 위해, 윈도우 단위로 가중치를 학습한다. 주목 가중치 재조정에서는 학습된 가중치를 평활화(Smoothing) 한다, 실험 결과, 본 논문에서 제안하는 방법은 정확도 기준으로 89.67%의 성능을 나타내어 장 단기 기억망 인코더보다 높은 성능을 보였다.
본 논문에서는 기준신호를 획득하기 어려운 환경에서 환경소음이 정상적인 특성을 가질 경우 음성을 향상시킬 수 있는 가중치 갱신제어 적응소음제거기를 제안하였다. 일반적인 적응소음제거기의 경우 소음만의 기준신호를 획득하여야 한다. 그러나 다수의 기기에 의한 복합적인 소음과 작업자에 의한 음성이 혼합되는 공장 환경에서는 소음발생원들로 부터 순수한 소음신호를 획득하기가 어렵다. 따라서 기준신호를 이용할 수 없기 때문에 이러한 환경에서는 기존의 적응잡음제거기를 사용하기가 어렵다. 제안한 방법에서는 입력신호를 임의의 상수로 하고 기준신호에 마이크로폰의 신호를 입력한다. 그런 다음 음성이 없는 구간에서 적응필터의 가중치를 갱신하여 소음을 제거하고 음성이 발생한 구간에서는 가중치를 고정하여 소음이 제거된 변형 음성신호를 획득한다. 그리고 변형 음성신호를 복원 필터링하여 음성신호를 출력한다. 이것은 다수의 공장소음이 정상적이고 짧은 대화구간에서 소음이 변하지 않는 점을 고려하였다. 실험의 결과 제안한 소음제거기가 공장소음을 효과적으로 제거할 수 있었고 신호 대 잡음비 면에서도 우수함을 확인하였다.
본 논문에서는 대학생들의 프로그래밍 과제물이나 프로그래밍 경진대회에 제출된 프로그램과 같이 동일한 기능을 요구받는 프로그램 소스 집합들에서 표절 행위가 있었는지를 탐색하는 새로운 알고리즘을 제시한다. 본 논문에서는 프로그램의 소스 집합에서 추출된 키워드들의 빈도수에 기반한 로그 확률값을 가중치로 하는 적응적(adaptive) 유사도 행렬을 만들어 이를 기반으로 주어진 프로그램의 유사구간을 탐색하는 지역정렬(local alignment) 방법을 소개한다. 우리는 10여개 이상의 프로그래밍 대회에 제출된 실제 프로그램으로 본 방법론을 실험하였다. 실험결과 이 방법은 이전의 고정적 유사도 행렬(일치 +1, 불일치 -1, 갭(gap)을 이용한 일치 -2)에 의한 유사구간 탐색에 비하여 여러 장점이 있음을 알 수 있었으며, 보다 다양한 표절탐색 목적으로 제시한 적응적 유사도 행렬이 응용될 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.