• Title/Summary/Keyword: 고정화 미생물

Search Result 233, Processing Time 0.027 seconds

Studies on the Immobilization of Saccharomyces cerevisiae for Ethanol Production (효모의 Alginate 고정화에 관한 연구)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.390-397
    • /
    • 1991
  • Ethanol production by calcium alginate-immobilized baker's yeast (Saccharor/tyces cereviszae) was studied in the batch fermentation using glucose medium as a feed. Immobilied cells were stable between $30^{\circ}C$ and $40^{\circ}C$ whereas free cells were stable between $30^{\circ}C$ and $37^{\circ}C$ The beads were showed constant ethanol productivity during 720 hours (30 days) over. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration of broth in fermentation. Initial glucose concentrations employed were 50, 100, 150 and 200 g/l, respectively. In 15% gucose medium, maximum specific growth rate, maximum ethanol yield and ethanol concentration were observed as 0.092 $h^{-1}$, 0.45, 67.5 g/l, respectively.

  • PDF

Immobilization of Cyclodextrin Glucanotransferase for Production of 2-O-\alpha-D-Glucopyranosyl L-Ascorbic Acid. (2-O-\alpha-D-Glucopyranosyl L-Ascorbic acid 생산을 위한 Cyclodextrin glucanotransferase의 고정화)

  • 성경혜;김성구;장경립;전홍기
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.368-376
    • /
    • 2003
  • Cyclodextrin glucanotransferase (CGTase) from Paenibacillus sp. JB-13 was immobilized on various carriers by several immobilization methods such as ionic binding, covalent linkage and ultrafiltration to improve the process performance. The ultrafiltration and covalent linkage with CNBr-activated sepharose 4B were found as the best method for immobilization of CGTase. The ability of CGTase immobilization onto CNBr-activated sepharose 4B was as high as 18,000 units/g resin when the conditions was as follows: contact time 9 hrs at $37^{\circ}C$, pH 6.0, 100 nm and enzyme loading 24,000 units/g resin. The optimum conditions for production of 2-O-$\alpha$-D-Glucopyranosyl L-Ascorbic acid by immobilized CGTase turned out to be: pH 5.0, temperature $37^{\circ}C$, 20% substrate solution containing 8% (w/v) of soluble starch and 12% (w/v) of L-ascorbic acid sodium salt, 100 rpm, far 25 hrs and with 800 units of immobilized CGTase/ml substrate solution. Moreover the CGTase activity could be stably maintained for 8 times of repetitive reactions after removing products by ultrafiltration through YM 10 membrane.

Continuous Ethanol Fermentation using Immobilized Yeasts (고정화 효모에 의한 연속적 에탄올 발효)

  • 서근학;송승구;문성훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.199-203
    • /
    • 1986
  • A tubular tormentor was prepared by packing the wood chips and pumping the yeast solution of Saccharomyces formosensis in a tubular column. Investigations to characterize the ethanol fermentation in the immobilized cell tubular fermentor and to compare such a fermentors with other type fermentors were undertaken. Ethanol productivity of 24.4g EtOH/$\ell$.hr has been obtained from glucose substrate. This productivity is higher or compared favourably with that reported in immobilized bio-reactors.

  • PDF

Decolorization of a Dye by Immobilized Lignin Degrading Enzymes Generated from Transformants of Merulius tremellosus Fr. (아교버섯 형질전환체가 생산한 리그닌분해 고정화효소에 의한 염료 탈색)

  • Min, Dong-Suk;Ryu, Sun-Hwa;Kim, Myung-Kil;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.225-227
    • /
    • 2012
  • Lignin degrading enzymes from white rot fungi show broad substrate specificities, and therefore they can degrade variety of recalcitrant compounds. We have used three different protocols for the generation of immobilized laccase and manganese peroxidase crude enzymes from the genetically transformed strains of Merulius tremellosus Fr. These immobilized enzymes were used in the decolorization of Remazol Brilliant Blue R (RBBR), and they showed about 75% decolorization rates during the 48 h reactions. Although the decolorization efficiency decreased by 10-15% after a repeated use of the immobilized enzymes, these can be reused in various degrading reactions.

Development of Supporting Materials with Curdlan and Activated carbon for Microbial Immobiliaztion (Curdlan과 활성탄을 이용한 미생물 고정화 담체개발)

  • 손효진;박양호;권규혁;이중헌
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.243-247
    • /
    • 2003
  • The microbial immobilization media with curdlan and activated carbon which has great immobilization capacity has been developed. Characteristics of porosity and mechanical strength of this support media are dependent on manufacturing method. The support media showed the best cell immobilization performance when the ratio of curdlan and activated carbon was 30 g/L to 6 g/L in this study. The immobilization of iron-oxidizing bacteria on the supporting particles was photographed with a scanning electron microscope. Since cell concentration on the surface of supporting particle increased with the reaction time, the iron oxidation rate also increased.

Kinetic Study on the Immobilized Penicillin Amidase in a Differential Column Reactor (Differential column reactor에 있어서 고정화페니실린 아미다제의 반응속도론에 관한 연구)

  • Park, Jong-Moon;Park, Cha-Yong;Seong, Baik-Lin;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 1981
  • The penicillin amidase from Escherichia coli (ATCC 9637) was immobilized by entrappment in gelatin and DEAE-cellulose mixture cross-linked with glutaraldehyde, and the kinetics in a differential column reactor was studied. The optimal operating condition of a differential reactor was reasonably met when the enzyme loading was 1g, and 30 mM substrate solution in 0.1 M phosphate buffer (pH 8.0) was fed at flow rate 4$m\ell$/min and 4$0^{\circ}C$. The optimal pH and temperature were found to be 8.0 and 55$^{\circ}C$, respectively. The Michaelis-Menten constant was 4.8 mM while the maximum velocity was 308 units/g of the immobilized enzyme under the condition of the differential reactor. The effect of substrate inhibition disappeared in the immobilized enzyme preparation. The differential reactor was proved to be good for studying the true kinetics since the pH drop and the external diffusional resistance could be eliminated.

  • PDF

Liquefaction and Saccharification of Starch Using $\alpha$-Amylase and Immobilized Glucoamylase ($\alpha$-아밀레이즈와 고정화된 글루코아밀레이즈를 이용한 전분의 액화 및 당화)

  • 안대희;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.497-503
    • /
    • 1991
  • The catalytic activities of immobilized gIucoamylase in a packed bed column and a continuous stirred tank reactor have been compared. Rapid production of glucose from liquefied starch have been studied through, the continuous liquefaction and saccharification using settling chamber. The immobilized glucoamylase with chitin gave the saccharification yield of 20% with the dextrin concentration of 100 g/l in a residence of 20 min. in a packed bed column. The half-life of immobilized glucoamylase with chitin was 19 days. The glucoamyalse immobilized in chitin and encapsulated with Ca-alginate gave the saccharification yield of 6% with the dextrin concentration of 50 g/l in a residence of 20 min. in a packed bed column. The Ca-alginate encapsulated and chitin immobilized glucomylase had a half-life of 25 days, which is 6 day larger than that of the immobilized glucoamylase with chitin only. In continuous liquefaction and saccharification, the glucose yield was 17% for the liquefied starch with naked barley concentration of 50gA in a residence of 20 min.

  • PDF

Hydrogen Production by the Immobilized Cells of Rhodopseudomonas sp. E15-1 (Rhodopseudomonas sp. E15-1의 균체 고정화에 의한 수소생성)

  • Bae, Moo;Park, Sun-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 1989
  • For improvement of photobiological hydrogen production, Rhodopseudomonas El5-1, a photo-synthetic becterium capable of producing n high yield of hydrogen, was immobilized and conditions for hydrogen production by immobilized cells were examined. The optimum concentration for the combined matrix was obtained when sodium alginate was used at final concentration of 4%. The immobilized cells may reduce the inhibitory effects of nitrogen or oxygen. To minimize the diffusion resistance of the nutrients in alginate gel, the bend size less than 2 mm in diameter was desirable. The immobilized cells were also able to utilize n wide range of organic substrates for the production of hydrogen. The hydrogen producing activity of the immobilized cells was maintained for 20 days without loss of activity during semi-continuous operation of the reactor by feeding of new medium periodically and continuous production of hydrogen could be successfully performed for 30 days.

  • PDF