• Title/Summary/Keyword: 고정염화물

Search Result 43, Processing Time 0.022 seconds

Adsorption Characteristics of CO2 on Activated Carbons Treated with Alkali-metal Salts (알칼리금속염으로 처리된 활성탄에 대한 CO2의 흡착특성)

  • Ryu, Dong Kwan;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.286-293
    • /
    • 1998
  • Two methods were used to enhance the adsorption capacity of activated carbons. One is to impregnate activated carbons with chemical compounds which have a good affinity for $CO_2$. The other is to activate by heat-treating after impregnation with KOH on activated carbons(AC). The chemical compounds impregnated on AC were alkali metal, alkaline earth metal, and transition metal chlorides. The adsorption capacity of $CO_2$ on AC impregnated with these metals was less than that of pure AC. These compounds have not the chemical affinity for $CO_2$ and obstruct the micropore of AC. The experiment of breakthrough for $CO_2$ on AC impregnated with KOH showed the increase of the adsorbed amount of $CO_2$ in influent gases containing water vapor. This means that KOH adsorbes $CO_2$ gas. However, the adsorbents impregnated with KOH had not the reproducibility because of the production of $K_2CO_3$ by the reaction of KOH with $CO_2$. The amount of $CO_2$ adsorbed on the heat-treated AC at $800^{\circ}C$ increased with the amount of impregnation. The adsorption capacity of $CO_2$ was the largest when the ratio of weight of KOH to AC equal to 4. The isosteric heat of adsorption was calculated by the equation of Clausius-Clapeyron form adsorption capacity data of $CO_2$ for the temperature change. In addition, the characteristics of $CO_2$ breakthrough curve were surveyed for the change of flow rate and concentration.

  • PDF

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia (암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구)

  • Cho, Gwang Hee;Park, Ji Hye;Rasheed, Haroon Ur;Yoon, Hyung Chul;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.