• Title/Summary/Keyword: 고정밀측위시스템

Search Result 2, Processing Time 0.017 seconds

Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery (승용형 농기계용 직진 자동조향장치 주행특성 연구)

  • Won, Jin-ho;Jeon, Jintack;Hong, Youngki;Yang, Changju;Kim, Kyoung-chul;Kwon, Kyung-do;Kim, Gookhwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2022
  • This paper introduces an automatic steering system for straight traveling capable of being mounted on drivable agricultural machinery which user can handle it such as a tractor, a transplant, etc. The modular automatic steering device proposed in the paper is composed of RTK GNSS, IMU, HMI, hydraulic valve, and wheel sensor. The path generation method of the automatic steering system is obtained from two location information(latitude and longitude on each point) measured by GNSS in advance. From HMI, a straight path(AB line) can be created by connecting latitude and longitude on each point and the device makes the machine able to follow the path. During traveling along the reference path, it acquires the real time position data every sample time(0.1s), compares the reference with them and calculates the lateral deviation. The values of deviation are used to control the steering angle of the machine using hydraulic valve mounted on the axle of front wheel. In this paper, Pure Pursuit algorithm is applied used in autonomous vehicles frequently. For the analysis of traveling characteristics, field tests were executed about these conditions: velocity of 2, 3, 4km/h which is applied to general agricultural work and ground surface of solid(asphalt) and weak condition(soil) such as farmland. In the case of weak ground state, two experiments were executed about no-load(without work) and load(with work such as plowing). The maximum average deviations were presented 2.44cm, 7.32cm, and 11.34cm during traveling on three ground conditions : asphalt, soil without load and with load(plowing).

Development of the Path Generation and Control System for Unmanned Weeding Robot in Apple Orchards (사과 과원 무인 제초를 위한 작업 경로 생성 및 경로 제어 시스템 개발)

  • Jintack Jeon;Hoseung Jang;Changju Yang;Kyoung-do Kwon;Youngki Hong;Gookhwan Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • Weeding in orchards is closely associated with productivity and quality. The customary weeding process is both labor-intensive and time-consuming. To solve the problems, there is need for automation of agricultural robots and machines in the agricultural field. On the other hand, orchards have complicated working areas due to narrow spaces between trees and amorphous terrain. Therefore, it is necessary to develop customized robot technology for unmanned weeding work within the department. This study developed a path generation and path control method for unmanned weeding according to the orchard environment. For this, the width of the weeding span, the number of operations, and the width of the weeding robot were used as input parameters for the orchard environment parameters. To generate a weeding path, a weeding robot was operated remotely to obtain GNSS-based location data along the superheated center line, and a driving performance test was performed based on the generated path. From the results of orchard field tests, the RMSE in weeding period sections was measured at 0.029 m, with a maximum error of 0.15 m. In the steering period within row and steering to the next row sections, the RMSE was 0.124 m, and 0.047 m, respectively.