• Title/Summary/Keyword: 고장점표정장치

Search Result 9, Processing Time 0.028 seconds

A Study on Automatic Switching System for Fault Locator (고장점 표정반 자동절체 시스템에 대한 연구)

  • Park, Yong-Bum;Lho, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8927-8932
    • /
    • 2015
  • A directional feeding method at the railway transformer is applied for supplying the power to the electric railway substations, and the pre-installed facilities with common feeder are utilized in preparation for the failure of feeding system and in finding a fault location in case that the catenary failure occurs. However, it is some difficulty in finding the fault location since there is an interface problem with the facilities when the supplying power system operates. In this paper, Auto Fault Locator Transfer Drive System (ALTDS) is designed to search for the fault location efficiently, and the measuring data are obtained and compared with the KORAIL standards. Further, the ground connection test is accomplished 24 times as the verification method, and it is shown that the methodology provides better performance than the existing traditional one.

Study on the Railway Fault Locator Impedance Prediction Method using Field Synchronized Power Measured Data (실측 동기화 데이터를 활용한 교류전기철도의 고장점표정장치 임피던스 예측기법 연구)

  • Jeon, Yong-Joo;Kim, Jae-chul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Due to the electrification of railways, fault at the traction line is increasing year by year. So importance of the fault locator is growing higher. Nevertheless at the field traction line, it is difficult to locate accurate fault point due to various conditions. In this paper railway feeding system current loop equation was simplified and generalized though measured data. And substation, train power data were measured under synchronized condition. Finally catenary impedance was predicted through generalized equation. Also simulation model was designed to figure out the effect of load current for train at same location. Train current was changed from min to max range and catenary impedance was compared at same location. Finally, power measurement was performed in the field at train and substation simultaneously and catenary system impedance was predicted and calculated. Through this method catenary impedance can be measured more easily and continuously compared to the past method.

The Fault Distance Computation Method for Fault Location Identification of Distribution System (배전계통 고장위치 확인을 위한 고장점 표정기법)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.276-281
    • /
    • 2008
  • Because the distribution systems experience frequently the fault by several causes, the identification task of fault location plays very important role in the view point of power supply reliability. The distribution systems are designed as radial structure with three-phase and single-phase branch line to supply the electric power to the widely dispersed loads, and it have a several load taps within each line segment. it makes the accurate fault distance determination difficult. Accordingly in this papers, the existing fault point determination methods are surveyed and analyzed, and then a fault distance determination method for distribution feeder is adopted which can be executed effectively in DAS center. Finally, the adopted method is verified using EMTP simulation.

  • PDF

송변전기기용 고장지단시스템 -변전기기용 센서를 중심으로-

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.282
    • /
    • pp.67-71
    • /
    • 2000
  • 일본, 유럽 및 미국 등의 선진국에서는 전력인프라가 거의 정비되어, 새로운 전력설비에 대한 투자보다 설비의 유지 보수$\cdot$점검비용의 비율이 더 커져가고 있다. 이러한 환경 하에 정기적인 유지보수$\cdot$점검에 요하는 비용, 사고시의 복구에 소요되는 비용 및 정전으로 인한 손실 등을 포함하여 라이프사이클 코스트의 최적화가 논의되고 있다. 유지보수$\cdot$점검에 대하여는 종래의 정기적인 유지보수(Time Based Maintenance : TBM)에서 상태대응 유지보수(Condition Based Maintenance : CBM)에로의 이행으로 비용을 삭감하려는 시도도 진전되고 있다. 이 때문에 전력설비의 상태를 파악할 수 있는 적절한 센서의 설치와 저가격의 가반형 센서의 도입도 추진되고 있다. 또한 설비의 진단장치를 차에 실은 이동진단차의 도입도 시작되고 있어, 복수의 전력소를 순회하며 효율 좋은 유지보수$\cdot$점검을 할 수 있게 되었다. EH 변전소의 무인화에 따라 정전시간 단축을 위해 사고 시에 원방복구조작이 가능한 고장점 표정장치도 도입되고 있다. 최근에는 SF${_6}$가스의 환경문제도 화제가 되어 가스를 대기 중에 방출하는 일 없이 고장구분을 표정할 수 있는 분해가스센서도 개발되었다.

  • PDF

Fault Location Estimation Algorithm in the Railway High Voltage Distribution Lines Using Flow Technique (반복계산법을 이용한 철도고압배전계통의 고장점표정 알고리즘)

  • Park, Kye-In;Chang, Sang-Hoon;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • High voltage distribution lines in the electric railway system placed according track with communication lines and signal equipments. Case of the over head lines is occurrence the many fault because lightning, rainstorm, damage from the sea wind and so on. According this fault caused protection device to wrong operation. One line ground fault that occurs most frequently in railway high voltage distribution lines and sort of faults is line short, three line ground breaking of a wire, and so on. For this reason we need precise maintenance for prevent of the faults. The most important is early detection and fast restoration in time of fault for a safety transit. In order to develop an advanced fault location device for 22.9[kV] distribution power network in electric railway system this paper deals with new fault locating algorithm using flow technique which enable to determine the location of the fault accurately. To demonstrate its superiorities, the case studies with the algorithm and the fault analysis using PSCAD/EMTDC (Power System Computer Aided Design/Electro Magnetic Transients DC Analysis Program) were carried out with the models of direct-grounded 22.9[kV] distribution network which is supposed to be the grounding method for electric railway system in Korea.

Analysis of the operation of Fault Locator in aspect of Line Constants by unifying Protect Wires (보호선 통합에 따른 선로정수 측면의 고장점 표정장치 동작에 관한 해석)

  • Lee, H.M.;Chang, S.H.;Han, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.275-277
    • /
    • 2004
  • when a fault occurs, we need the fault locator to find out the location of the fault quickly. The fault locator can find out the exact location of the fault through the line constants of the catenary system. If the configuration of the catenary system is modified, the line constants is also changed. Therefore, this paper analyzes the error of the operation of the fault locator by the simulation.

  • PDF

D.C. Power system Failure Point Informing Device Development of Face Trial for the Site Installation (직류급전시스템 고장점표정장치 개발을 위한 현장시범 설치)

  • Kim, Youn-Sik;Kim, Yong-Duk;Ha, Tae-Yoo;Han, Moon-Seob;Park, Jong-Gook;Im, Hyeong-Gil
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2011-2014
    • /
    • 2011
  • A "failure point informing device" is that if a accident of short or ground occurs in electric railway it inform us of the distance to accident point. SeoulMetro, KRRI, 2ISYS have developed this device and installed in line no.4 substation Iy-Chon, Sam-Gakgi to test its performance. A line resistance will be measured to test this device in November.

  • PDF

A Study on Digital Fault Locator for Transmission Line (송전선로용 디지털 고장점 표정장치에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.291-296
    • /
    • 2015
  • Transmission line is exposed to a large area, and then faults are likely to occur than the other component of power system. When a fault occurs on a transmission line, fault locator helps fast recovery of power supply on power system. This paper deals with the design of a digital fault locator for improvement accuracy of the fault distance estimation and a fault occurrence position for transmission line. The algorithm of a fault locator uses a DC offset removal filter and DFT filter. The algorithm utilizes a fault data of GPS time synchronized. The computed fault information is transmitted to the other side substation through communication. The digital fault locator includes MPU module, ADPU module, SIU module, and a power module. The MMI firmware and software of the fault locator was implemented.

Fault Locator using GPS Time-synchronized Phasor for Transmission Line (송전선로의 동기페이저를 이용한 고장점 표정장치)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Fault location identification in the transmission line is an essential part of quick service restoration for maintaining a stable in power system. The application of digital schemes to protection IEDs has led to the development of digital fault locators. Normally, the impedance measurement had been used to for the location detection of transmission line faults. It is well known that the most accurate fault location scheme uses two-ended measurements. This paper deals with the complete design of a fault locator using GPS time-synchronized phasor for transmission line fault detection. The fault location algorithm uses the transmitted relaying signals from the two-ended terminal. The fault locator hardware consists of a Main Processor Unit, Analog Digital Processor Unit, Signal Interface Unit, and Power module. In this paper, sample real-time test cases using COMTRADE format of Omicron apparatus are included. We can see that the implemented fault locator identified all the test faults.