• Title/Summary/Keyword: 고장예지 및 건전성 관리

Search Result 18, Processing Time 0.023 seconds

고장예지 및 건전성관리 기술의 소개

  • Choe, Ju-Ho
    • Journal of the KSME
    • /
    • v.53 no.7
    • /
    • pp.26-34
    • /
    • 2013
  • 이 글에서는 최근 관심을 모으고 있는 고장예지 및 건전성관리(PHM: Prognostics and Health Management) 기술을 소개하고, 항공우주분야의 적용사례를 중심으로 PHM 기술을 어떻게 활용하고 있는지를 설명하고자 한다.

  • PDF

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

자동차의 진화와 전장부품 진단기술의 진화 필요성

  • Han, Chang-Un
    • Journal of the KSME
    • /
    • v.53 no.7
    • /
    • pp.40-43
    • /
    • 2013
  • 이 글에서는 최근 관심을 모으고 있는 고장예지 및 건전성관리(PHM: Prognostics and Health Management) 기술이 자동차 전장부품에 어떻게 적용돼야 하는지에 대한 설명을 하고자 한다.

  • PDF

Deep-Learning based PHM Embedded System Using Noise·Vibration (소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템)

  • Lee, Se-Hoon;Sin, Bo-Bae;Kim, Ye-Ji;Kim, Ji-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF

Neural Network based Aircraft Engine Health Management using C-MAPSS Data (C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리)

  • Yun, Yuri;Kim, Seokgoo;Cho, Seong Hee;Choi, Joo-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • PHM (Prognostics and Health Management) of aircraft engines is applied to predict the remaining useful life before failure or the lifetime limit. There are two methods to establish a predictive model for this: The physics-based method and the data-driven method. The physics-based method is more accurate and requires less data, but its application is limited because there are few models available. In this study, the data-driven method is applied, in which a multi-layer perceptron based neural network algorithms is applied for the life prediction. The neural network is trained using the data sets virtually made by the C-MAPSS code developed by NASA. After training the model, it is applied to the test data sets, in which the confidence interval of the remaining useful life is predicted and validated by the actual value. The performance of proposed method is compared with previous studies, and the favorable accuracy is found.

Fault Prognostics of a SMPS based on PCA-SVM (PCA-SVM 기반의 SMPS 고장예지에 관한 연구)

  • Yoo, Yeon-Su;Kim, Dong-Hyeon;Kim, Seol;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.47-52
    • /
    • 2020
  • With the 4th industrial revolution, condition monitoring using machine learning techniques has become popular among researchers. An overload due to complex operations causes several irregularities in MOSFETs. This study investigated the acquired voltage to analyze the overcurrent effects on MOSFETs using a failure mode effect analysis (FMEA). The results indicated that the voltage pattern changes greatly when the current is beyond the threshold value. Several features were extracted from the collected voltage signals that indicate the health state of a switched-mode power supply (SMPS). Then, the data were reduced to a smaller sample space by using a principal component analysis (PCA). A robust machine learning algorithm, the support vector machine (SVM), was used to classify different health states of an SMPS, and the classification results are presented for different parameters. An SVM approach assisted by a PCA algorithm provides a strong fault diagnosis framework for an SMPS.

A Survey on Health Monitoring and Management Technology for Liquid Rocket Engines (액체로켓엔진의 건전성 감시및 관리 기법에 관한 현황 분석)

  • Cha, Jihyoung;Ha, Chulsu;O, Suheon;Ko, Sangho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.50-58
    • /
    • 2014
  • This paper is about a short survey on the recent research activities regarding health monitoring and management for liquid rocket engines. For this, we investigate the precedent techniques developed in advanced space-industry countries which are USA, EU, Russia, Japan and China. Particularly, we focus on the technologies applied in China, a recently joined to the advanced space-industry countries in this field. Then we discuss some important points to be considered to apply to the development of the Korea Space Launch Vehicle KSLV-II and other related projects.

Feature Extraction for Bearing Prognostics using Weighted Correlation Coefficient (상관계수 가중치를 이용한 베어링 수명예측 특징신호 추출)

  • Kim, Seokgoo;Lime, Chaeyoung;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • Bearing is an essential component in many rotary machineries. To prevent its unpredicted failures and undesired downtime cost, many researches have been made in the field of Prognostics and Health Management(PHM), in which the key issue is to establish a proper feature reflecting its current health state properly at the early stage. However, conventional features have shown some limitations that make them less useful for early diagnostics and prognostics because it tends to increase abruptly at the end of life. This paper proposes a new feature extraction method using the envelope analysis and weighted sum with correlation coefficient. The developed method is demonstrated using the IMS bearing data given by NASA Ames Prognostics Data Repository. Results by the proposed feature are compared with those by conventional approach.