• Title/Summary/Keyword: 고유 얼굴

Search Result 139, Processing Time 0.022 seconds

Illumination-Robust Face Recognition based on Illumination-Separated Eigenfaces (조명분리 고유얼굴에 기반한 조명에 강인한 얼굴 인식)

  • Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • The popular eigenfaces-based face recognition among proposed face recognition methods utilizes the eigenfaces obtained from applying PCA to a training face image set. Thus, it may not achieve a reliable performance under illumination environments different from that of training face images. In this paper, we propose an illumination-separate eigenfaces-based face recognition method, which excludes the effects of illumination as much as possible. The proposed method utilizes the illumination-separate eigenfaces which is obtained by orthogonal decomposition of the eigenface space of face model image set with respect to the constructed face illumination subspace. Through experiments, it is shown that the proposed face recognition method based on the illumination-separate eigenfaces performs more robustly under various illumination environments than the conventional eigenfaces-based face recognition method.

Face Recognition Using View-based EigenSpaces (시점 기반 고유공간을 이용한 얼굴 인식)

  • 김일정;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.458-460
    • /
    • 1998
  • 본 논문은 주성분 분석으로 시점 기반 고유얼굴(view-based eigenface)을 생성하고, 그에 기반한 얼굴 인식을 수행하고자 한다. 주성분 분석을 통한 고유얼굴 생성은 얼굴 인식의 어려운 문제 중 하나인 특징 선택과 추출이라는 문제를 해결해 준다. 또한 얼굴 표정이나 방향의 변화에도 인식률이 저하되는 것을 방지할 수 있다. 얼굴 영상을 특징공간(고유공간)으로 변환할 때, 원 얼굴영상의 정보를 최대한으로 나타낼 수 있는 최적의 고유치 개수 선택은 얼굴 데이터베이스의 크기와 인식 속도에 영향을 끼친다. 따라서 본 논문에서는 고유치 개수를 고유치의 누적기여율을 이용해서 구한다. 이는 64$\times$64(=4096)차원의 원 얼굴 영상을 5~7차원으로 표현 가능하게 하였다. 그리고, 각 얼굴 방향에 따라 특징공간을 분리해서 생성함으로써 얼굴 방향의 변화에 따라 오인식률을 줄였다. 축소된 차원과 분리된 특징공간은 메모리 사용과 인식속도의 향상에 기여한다. 본 논문에서 얼굴의 인식은 Mahalanobis distance와 재구성 오차율을 고려해서 이루어졌다. 실험은 개인당 세가지 다른 방향을 가지는 얼굴 영상을 이용하여 이루어졌고, 실험결과, 약 93%의 인식률을 보여주었다.

  • PDF

A Face Recognition System using Eigenfaces : Performance Analysis (고유얼굴을 이용한 얼굴 인식 시스템: 성능분석)

  • Kim Young-Lae;Wang Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.273-276
    • /
    • 2005
  • 본 논문은 고유얼굴 방법을 이용한 얼굴인식 시스템의 성능을 분석하였다. 제안한 고유얼굴을 이용한 얼굴인식 방법은 훈련집합의 얼굴 이미지 사이의 중요한 변화를 가지고 있는 특징공간으로 투영시키면서 이루어진다. 중요한 특징들은 얼굴집합의 고유벡터(주성분)들이기 때문에 고유얼굴이라 한다. 특징 공간으로의 투영은 고유얼굴의 가중치의 합으로 입력얼굴을 기술할 수 있으며, 입력 얼굴의 인식은 훈련집합의 가중치와 입력 영상의 가중치를 비교하면서 이루어진다. 본 논문에서는 제안된 방법의 검증을 위해서 Harvard 데이터베이스를 이용하였으며, 시스템의 성능 분석을 위하여 조명에 대한 인식성능의 변화, 사용한 고유얼굴의 수에 대한 인식률의 변화, 전처리를 통하여 얻을 수 있는 인식률의 변화, 인식 거부 곡선을 통하여 시스템의 적용 가능성에 대한 실험을 수행하여 분석한다.

  • PDF

Face Recognition Method using Individual Eigenfaces Space (개인별 고유얼굴 공간을 이용한 얼굴 인식 방법)

  • Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.5
    • /
    • pp.119-123
    • /
    • 2006
  • We present a new face recognition method, which selects eigenfaces by our algorithm instead of the existing eigenfaces selection method that chooses eigenfaces by the value of corresponding eigenvalues. We justify our method by comparing our method with traditional one by experiments with YALE, ORL database. By using our algorithm in selecting the eigenfaces, we obtain higher recognition rate than the existing schemes.

A Face Recognition System using Eigenfaces: Performance Analysis (고유얼굴을 이용한 얼굴 인식 시스템: 성능분석)

  • Kim, Young-Lae;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2005
  • This paper analyzes the performance of a face recognition algorithm using the eigenfaces method. In the absence of robust personal recognition schemes, a biometric recognition system has essentially researched to improve their shortcomings. A face recognition system in biometries is widely researched in the field of computer vision and pattern recognition, since it is possible to comprehend intuitively our faces. The proposed system projects facial images onto a feature space that effectively expresses the significant variations among known facial images. The significant features are known as 'eigenfaces', because they are the eigenvectors(principal components) of the set of faces. The projection operation characterizes an individual face by a weighted sum of the eigenface features, and to recognize a particular face it is necessary only to compare these weights to those of known individuals. In order to analyze the performance of the system, we develop a face recognition system by using Harvard database in Harvard Robotics Laboratory. We present the recognition rate according to variations on the lighting condition, numbers of the employed eigenfaces, and existence of a pre-processing step. Finally, we construct a rejection curve in order to investigate the practicability of the recognition method using the eigenfaces.

Face Recognition using Fuzzy Theorem and Eigenfaces (고유 얼굴 분포에 기반한 퍼지 이론을 이용한 얼굴 인식)

  • 김재협;문영식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.811-813
    • /
    • 2004
  • 본 논문에서는, 고유 얼굴 분포를 기반으로 하여 퍼지 이론을 이용한 얼굴 인식 기법을 제안한다 고유 얼굴의 가중치값들에 대해 각각의 분포를 이용한 소속도 함수가 계산되며. 소속도 함수를 통해 계산된 소속도는 신경망을 통해 학습된다.

  • PDF

Face Recognition Using PCA and Fuzzy Weighted Average Method (PCA와 퍼지 가중치 평균 기법을 이용한 얼굴 인식)

  • Woo, Young-Woon;Kim, Hyung-Soo;Park, Jae-Min;Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.315-316
    • /
    • 2011
  • 일반적으로 영상에서 얼굴 영상을 검출하고 인식하는 알고리즘은 패턴 인식 연구에 있어서 인간과 컴퓨터의 상호작용의 연구라는 면에서 아주 중요한 문제로 연구되어 왔다. 본 논문에서는 고유얼굴을 이용하여 유클리디언 거리법과 퍼지기법의 인식률을 비교해보고자 한다. PCA(Principal Component Analysis) 방식은 우수한 인식 결과를 보장하는 얼굴인식 기법중의 하나이며, 얼굴 영상을 이용하여 공분산 행렬을 계산하고, 공분산 행렬을 통해 생성된 저차원의 벡터, 즉 고유얼굴(Eigenface)을 이용하여 가중치를 계산하고, 이 가중치를 기준으로 인식을 수행하는 기법이다. 이를 기반으로 하여, 본 논문에서는 전처리 과정, 고유얼굴 과정, 유클리디언 거리법 및 퍼지 소속도 함수 설계 과정, 신경망 학습과정, 인식과정으로 구성된 5단계의 얼굴 인식 알고리즘을 제안한다.

  • PDF

Generation of Facial Expression through Analyzing Eigen-Optical-Flows (고유광류 분석에 의한 얼굴 표정 생성)

  • 김경수;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.165-168
    • /
    • 1998
  • 얼굴을 인식하는 연구 분야는 얼굴 영상을 분석하는 과정을 거친다. 또한, 얼굴 영상 분석은 얼굴 영상을 이용하는 모든 분야의 연구에 필요한 전처리 과정이라고 할 수 있다. 그러나 얼굴 영상을 분석하는 일은 많은 비용이 든다. 본 연구에서는 이러한 분석과정을 거치지 않고 얼굴 영상을 변형한다. 입력되어지는 얼굴 영상에 나타나는 얼굴 표정을 파악하기 위하여 입력되는 데이터의 변화를 가장 잘 표현해 주는 것으로 널리 알려져 있는 고유 벡터를 이용하며, 기존의 영상을 변형한새로운 영상을 생성하기 위해서 가장 직관적으로 사용할 수 있지만, 광류 영상을 구하는 과정이 시간적으로 많은 비용을 요구하기 때문에, 본 연구에서는 일반 영상에 대한 고유 벡터와 광류 영상에 대한 교유 벡터를 이용하여 고유 벡터 공간 상의 가중치 벡터를 전달하는 방법으로 영상을 처리할 때마다 수행하여야 하는 광류 계산과정을 제거하였다.

  • PDF

Fast Gabor Feature Extraction for Real Time Face Recognition (실시간 얼굴인식을 위한 빠른 Gabor 특징 추출)

  • Cho, Kyoung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.597-600
    • /
    • 2007
  • Face is considered to be one of the biometrics in person identification. But Face recognition is a high dimensional pattern recognition problem. Even low-resolution face images generate huge dimensional feature space. The aim of this paper is to present a fast feature extraction method for real time human face recognition. first, It compute eigen-vector and eigen-value by Principle component analysis on inputed human face image, and propose method of feature extraction that make feature vector by apply gabor filter to computed eigen-vector. And it compute feature value which multiply by made eigen-value. This study simulations performed using the ORL Database.

  • PDF

Face Recognition Using Eigenfaces and Wavelet (고유얼굴과 웨이블릿을 이용한 얼굴인식)

  • 박상근;전준철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.340-342
    • /
    • 2003
  • 본 논문은 웨이블릿 변환을 통해 얻어진 부밴드들을 고유얼굴을 이용한 얼굴인식 시스템에 적용하여 성능을 향상 시키기 위한 방법을 제안한다. 현재 상용화되어 있는 고유얼굴을 이용한 얼굴인식 방법은 속도가 빠르고 단순하며 학습능력이 졸은 특징을 가지고 있지만 훈련 얼굴영상들의 증가에 따라 계산량이 급격히 증가하는 문제점을 가지고 있다. 이를 해결하기 위해서 웨이블릿 변환를 통해 얻어진 해상도가 작은 부밴드 얼굴영상을 인식 과정에 사용되는 얼굴영상으로 사용함으로서 계산량의 증가에 대한 문제를 해결 할 수 있다. 얼굴의 인식률을 향상시키기 위한 방법으로는 웨이블릿 변환시에 나타나는 하나의 저대역 부밴드와 세 개의 방향성분을 가진 부밴드 얼굴영상의 특징벡터들을 벡터적으로 결합하여 인식과정에서 사용하여 인식의 정확도를 높이려 한다.

  • PDF