• 제목/요약/키워드: 고유치 재해석

검색결과 3건 처리시간 0.032초

연속법에 의한 판구조 고유진동수의 민감도 해석 (Eigenvalue design sensivity analysis of structure using continuum method)

  • 이재환;장강석;신민용
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF

위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경 (Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications)

  • 이준호;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

비부합 절점으로 이루어진 구조물의 합성과 재해석 (On a Substructure Synthesis Having Non-Matching Nodes)

  • 정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.155-160
    • /
    • 2001
  • Actual engineering structure is frequently very complex, and parts of structure are designed independently by different engineers. Also each structure contains so many degree of freedom. For these reason, methods have been developed which permits the structure to be divided into components or substructures, with analysis being done on a small substructure in order to obtain a full structural system. In such case, because of different mesh size among finite element model (FEM) or different matching points among FEM models and experimentally obtained models, their interfacing points may be non-matching. Solving this non-matching problem is useful to other application such as structural dynamic modification or model updating. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint, and interface displacement is approximated by polynomial presentation. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalue of whole structure are calculated using the determinant search method. The number of degree of freedom in the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Some numerical simulation is performed to show usefulness of synthesis method.

  • PDF