• Title/Summary/Keyword: 고온플랜트

Search Result 65, Processing Time 0.032 seconds

A Study of Particle Collection Efficiency and Characteristics of Cyclone(I) (싸이클론 집진효율 및 특성 연구(I))

  • ;;M. Bohnet
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.83-84
    • /
    • 2002
  • 사이클론 집진기(이하 "사이클론"으로 표기)는 1800년대 후반에 기본개념이 싹트기 시작한 이후 100년 이상의 역사를 지닌 집진 장치로서, 구성이 단순하고, 고온 및 고압에서도 동작이 가능하며, 에너지 소모가 적고, 제조비용과 유지비용이 저렴한 특징을 지니고 있다. 현재 산업체에 설치되어 있는 싸이클론은 대용량의 가스처리, 입경 10-200$\mu\textrm{m}$까지의 분진처리, 낮은 초기설치비, 유지보수 및 조작의 간편성 때문에 산업체 여러 분야에서의 응용성은 다양하고 응용범위도 상당히 넓다고 할 수 있으며 석탄가스화 복합발전 플랜트, 쓰레기 소각로, 순환유동층 보일러 등에 널리 사용되고 있다. (중략)

  • PDF

Development of a Tele-operating Multi-Link Robot for Pipe Inspection (배관검사용 원격제어 다관절 로봇 개발)

  • Choi, You-Rak;Lee, Jae-Cheol;Chio, Young-Su;Kim, Jae-Hee;Lee, Nam-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.245-248
    • /
    • 2014
  • 산업플랜트에는 고온 고압 배관 시스템을 갖춘 곳이 많으며, 이 배관 시스템의 건전성은 매우 중요하게 취급된다. 배관의 건전성 유지를 위해서는 일정 기간 동안 배관의 안정성 검사를 수행하게 되는데, 배관 시스템의 복잡성과 위험성으로 인한 검사자의 접근 자체가 매우 어려운 상황이 빈번하게 발생한다. 이를 해결하기 위하여 로봇 개술을 적용하는 연구개발이 지속되고 있는데 본 논문에서는 5축 대관절 매니퓰레이터 형태의 배관 등반이 가능한 반자동 원격 제어 로봇의 개발에 대하여 기술한다. 이 로봇의 구현을 위해서는 로봇의 배관 인지 기술, 로봇의 배관 그리핑 기술, 5축 관절의 제어 기술, 그리고 원격제어기술등이 요구된다.

  • PDF

A Prediction of Coal Ash Slagging for Entrained Flow Gasifiers (분류층 석탄가스화기 Slag 용융특성 예측)

  • Koo, Jahyung;Kim, Bongkeum;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 분류층 가스화기는 석탄과 산소(공기) 및 수증기가 반응하여 $1200{\sim}1600^{\circ}C$의 고온, 20~60기압의 고압에서 작동되어 합성가스를 생성하며 합성가스에 포함된 입자 및 황화합물 등을 정제설비를 통하여 정제 후 발전 및 화학원료로 사용한다. 석탄가스화 중 석탄에 포함된 대부분의 회분은 용융슬래그 형태로 가스화기 벽면을 따라 흘러 내려 가스화기 하부의 냉각수조에서 급랭되어 배출된다. 이때 용융슬래그의 원활한 배출을 위해서는 일정범위의 점도를 유지하는 것이 필요하다. 슬래그의 점도는 가스화기 온도 및 Ash의 조성에 따라 크게 변하며 가스화기 설계 및 운전 시 매우 중요한 변수이다. 따라서 최적의 설계 및 운전을 위해서는 Ash의 점도예측이 중요하며, 분류층 가스화기내부에서 Ash 점도 예측을 위한 DooVisco 프로그램을 개발하였다. DooVisco는 가스화기 내부에서 슬래그 용융온도 및 온도별 점도, 가스화기 최소 운전온도 및 석회석 투입 효과 분석뿐만 아니라 석탄의 혼합 사용 시의 특성 예측도 가능하도록 개발되었다. DooVisco는 슬래그 주요 4성분인 SiO2, Al2O3, CaO, FeO 성분에 대한 Phase Diagram을 이용하여 1차적으로 슬래그용융온도(Liquidus Temperature)를 예측하고, 주요 4 성분 외에 Na2O, MgO, K2O, TiO2 등을 고려한 Kalmanovich Model을 이용하여 점도를 예측한다. 최종적으로 슬래그 용융온도와 점도를 활용하여 분류층 가스화기 운전가능 온도범위를 예측한다. 개발된 DooVisco를 활용하여 300MW급 실증 IGCC 플랜트에 사용가능성이 있는 석탄을 대상으로 슬래그의 용융온도 및 점도 등을 예측하였으며 최적 운전을 위한 슬form점도 조절용 Flux인 석회석 투입량 등을 평가하였다. 평가 결과 슬래그 용융온도가 $1700^{\circ}C$ 이상으로 석회석 투입이 필요하다고 판단되었다. 약 가스화기 내부 온도를 $1500^{\circ}C$ 정도에서 원활한 운전을 위해서는 석탄 대비 약 10% 내외의 석회석 투입이 필요할 것으로 평가되었다. DooVisco는 분류층 가스화기 설 계시 가스화기 최적 운전 온도 설정 및 Flux 투입필요성, 종류, 투입량 선정에 활용될 수 있을 뿐만 아니라 플랜트 운전시 석탄의 탄종 적합성 등을 판단하는데 활용될 수 있을 것이라 판단된다.

  • PDF

Aplication of the Thermodynamic Measurement Method for On-site Performance Evaluation of Hot Water Pumps Used in District Heating (지역난방 중온수 펌프의 현장 성능평가를 위한 열역학적 측정법 적용)

  • Park, Cheol Gyu;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • It is very difficult to accurately calculate efficiency of each accessory device constituting the pump system and pump efficiency by the Conventional efficiency measurement method only. Therefore, this study introduced the lastest Thermodynamic pump efficiency measurement method in the district heating pump system for the first time in Korea. As a result, data uncertainty was high by the Conventional method, but the pump and Hydraulic Coupling efficiency values applied the Thermodynamic and Conventional method parallel measurement data were able to derive meaningful results that verified the reliability and adequancy of the pump performance measurement method by performing complementary roles. In additon, as a result of applying the Thermodynamic method to the distirct heating pump system, despite the high temperature environment of up to 120 ℃, it was possible to verify the reliability of the Thermodynamic method, such as high stable data mesurement, and durability of the measurement equipment.

Effect of the De-NOx Facility Operating Condition on NOx Emission in a 125 MW Wood Pellet Power Plant (125 MW급 우드펠릿 발전소에서 탈질설비 운전조건이 질소산화물 발생량에 미치는 영향)

  • Jeon, Moonsoo;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2022
  • This study tested the effect of de-NOx Facility operating condition on Nox emisiion in a 125 MW wood pellet power plant in Yeongdong Eco Power Plant Unit 1, which is in operation. As SNCR urea flow rate increased, NOx emission gradually decreased, but ammonia slip after SCR increased. The boiler under test has a structure that is unfavorable to SNCR operation due to the high internal temperature, and the optimum location of the nozzle will be required. SCR dilution air temperature change did not affect the amount of NOx generated. Increasing SCR ammonia flow reduced the NOx emission at SCR outlet and also increased the NOx removal efficiency. However, the ammonia flow rate of 111 kg/h, which does not exceed the ammonia slip its own reference limit, is estimated to be the maximum operating standard. The increase in SCR mixer pressure reduced NOx emission and the removal efficiency was also measured to be the most effective variable to inhibit NOx production.

  • PDF

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

Selection of Postweld Heat Treatment Condition of a High-Temperature and High-Pressure Forged Valve (고온고압용 단조밸브의 용접후열처리 조건 선정)

  • Park, Jae-Seong;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.48-59
    • /
    • 2014
  • Coupons which have same figure as weld joint of the forged steel valves and 1 inch nominal weld thickness were manufactured using ASTM A182 F92 material. After welding with GTAW method, the welded specimens have been post-weld heat treated at $705^{\circ}C$, $735^{\circ}C$, $750^{\circ}C$, $765^{\circ}C$, $795^{\circ}C$ and $825^{\circ}C$ for 1 hour per 1 inch nominal weld thickness each (Group 1) to evaluate characteristics of welds based on various holding temperature. Indeed, 3 welded specimens were post-weld heat treated for 30 minutes, 1 hour and 2 hour (Group 2) at $735^{\circ}C$ to evaluate characteristics of welds based on various holding time. Hardness values were measured at the weld metal, heat affected zone and base metal to observe hardness change depending on the condition. As a result of the evaluation, appropriate holding temperature for PWHT is proved as $750^{\circ}C$ and $765^{\circ}C$ for 1hour per 1 inch nominal weld thickness. Indeed, holding for 1 hour per 1 inch nominal weld thickness was insufficient for PWHT effect when the holding temperature was at $735^{\circ}C$. The microstructure of post-weld heat treated weld metal was determined as tempered-martensite structure.

  • PDF

Performance Characteristics of the 300 MW Integrated Gasification Combined Cycle Plant according to Ambient Temperature (대기온도에 따른 300 MW 석탄가스화복합발전 성능특성)

  • Kim, Young-Mook;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • In this study, the output and thermal efficiency of Taean Integrated Gasification Combined Cycle Plant were calculated by using the manufacturer's basic design data and the performance correction factor for each atmospheric temperature, and the actual performance was measured at summer and winter representative points. The results were compared with the calculated values to verify their validity. The thermal efficiency is the highest at around $15^{\circ}C$ and lower at lower temperature and higher temperature. This is similar to that of natural gas Combined Cycle Power Plant, but the thermal efficiency has drastically decreased due to the increase of power consumption of the air separation unit at relatively high temperature. The output is highest in the range of 5 to $15^{\circ}C$, and is kept almost constant at below $5^{\circ}C$ and declines above $15^{\circ}C$. The reason why the output does not increase at low temperatures is that the torque limit of the shaft is activated by the increase of the flow rate due to the nitrogen injection of the gas turbine combustor. In order to improve the performance in the future, efforts should be made to improve the power generation output and to reduce the power consumption of the air separation unit in summer.

  • PDF

Erosion-Corrosion Behavior of Power Plant Pipe Caused by Hot Feed Water (고온 급수에 의한 파워 플랜트 배관 침식-부식 거동)

  • Bang, Sung-Ho;Lee, Jin-Won;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.739-745
    • /
    • 2013
  • In this study, we tried to define the erosion-corrosion behavior together with the resulting effects on a pipe that is a part of a feed water circulation system according to the pipe size and hot feed water environment. An erosioncorrosion analysis was performed through the Hayduk and Minhas model based on the chemical reaction between iron and oxygen, an essential corrosive factor. The erosion-corrosion rate against the pipe diameter and feed water temperature was then evaluated by means of finite element analysis using ABAQUS. As shown in the results, the feed water temperature was the main factor influencing the erosion-corrosion rate; in particular, it was expected that the thickness of 316 stainless steel would decrease by $2.59{\mu}m$ every year in a hot water environment at $290^{\circ}C$.

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.